
The amsmath package

Frank Mittelbach Rainer Schöpf Michael Downes
David M. Jones David Carlisle

Version v2.18a, 2025/11/03

This file is maintained by the LATEX Project team.
Bug reports can be opened (category amslatex) at
https://latex-project.org/bugs/.

1 Introduction
A LATEX package named amstex was created in 1988–1989 by adapting
amstex.tex for use within LATEX. The amsmath package is the successor of the
amstex package. It was substantially overhauled to integrate it with LATEX2e,
which arrived on the scene in 1994. It provides more or less the same features,
but there are quite a few organizational differences as well as some new fea-
tures and bug fixes. For example, the amstex package automatically loaded
the amsfonts package, but the amsmath package does not. At the present time
(November 1999) user-level documentation of the commands provided here is
found in the AMSmath Users’ Guide, amsldoc.tex.

Standard file identification.

\NeedsTeXFormat{LaTeX2e}% LaTeX 2.09 can’t be used (nor non-LaTeX)

[1994/12/01]% LaTeX date must be December 1994 or later

Providing a rollback to earlier version(s). Anything prior to 2018 we attempt
to fulfill by using the version from 2018.

\DeclareRelease{}{1994-06-01}{amsmath-2018-12-01.sty}

\DeclareRelease{}{2018-12-01}{amsmath-2018-12-01.sty}

\DeclareCurrentRelease{}{2019-04-01}

\ProvidesPackage{amsmath}[2025/11/03 v2.18a AMS math features]

2 Catcode defenses
Some packages change the catcode of characters that are essential in low-level
TEX syntax. Any package that does so does not qualify as a PWWO package
(“Plays Well With Others”) because it can cause other packages to fail if they
are loaded later. LATEX is partly to blame for this because it fails to provide
adequate built-in safeguards in the package loading mechanisms. In the absence
of such safeguards, we will provide them here.

1

https://latex-project.org/bugs/

2 THE AMSMATH PACKAGE

\edef\@temp{\catcode 96=\number\catcode 96 }

\catcode\string ‘\‘=12

\def\do#1{\catcode\number‘#1=\number\catcode‘#1}

\edef\@temp{%

\noexpand\AtEndOfPackage{%

\@temp

\do\"\do\’\do\(\do\)\do*\do\+\do\,\do\-\do\.%

\do\/\do\<\do\=\do\>\do\[\do\]\do\^\do_\relax

}%

}

\@temp

\def\do#1{\catcode\number‘#1=12 }

\do\"\do\’\do\(\do\)\do*\do\+\do\,\do\-\do\.

\do\/\do\<\do\=\do\>\do\[\do\]

\catcode‘\^=7 \catcode‘_=8

3 Declare some options
Handling of limits on integrals, sums, operatornames.

\DeclareOption{intlimits}{\let\ilimits@\displaylimits}

\DeclareOption{nointlimits}{\let\ilimits@\nolimits}

\DeclareOption{sumlimits}{\let\slimits@\displaylimits}

\DeclareOption{nosumlimits}{\let\slimits@\nolimits}

\DeclareOption{namelimits}{\PassOptionsToPackage{namelimits}{amsopn}}

\DeclareOption{nonamelimits}{%

\PassOptionsToPackage{nonamelimits}{amsopn}}

The following two switches might have been defined already by the docu-
mentclass, but it doesn’t hurt to re-execute the \newif’s.

\newif\ifctagsplit@

\newif\iftagsleft@

Right or left placement of equation numbers.

\DeclareOption{leqno}{\tagsleft@true}

\DeclareOption{reqno}{\tagsleft@false}

\DeclareOption{centertags}{\ctagsplit@true}

\DeclareOption{tbtags}{\ctagsplit@false}

The cmex10 option is an escape hatch for people who don’t happen to have
sizes 7–9 of the cmex fonts available to them yet. (Strictly speaking they are
considered part of a minimum LATEX distribution now, i.e., all LATEX2ε users
should have them, without needing to get the AMSFonts distrib.)

\DeclareOption{cmex10}{%

\ifnum\cmex@opt=\@ne \def\cmex@opt{0}%

\else \def\cmex@opt{10}\fi

}

To help things work out better with various package loading orders of amsmath
and amsfonts, we establish a variable to communicate the status of the cmex
font definition. If the amsfonts package was loaded first this variable might be
already defined, in which case we want to preserve its value.

4. FLUSH-LEFT EQUATIONS [DMJ] 3

\@ifundefined{cmex@opt}{\def\cmex@opt{7}}{}

4 Flush-left equations [DMJ]
The left margin of math environments is controlled by \@mathmargin. This
can be set to \@centering to implement the default behaviour, i.e., centered
equations, and to something else to implement the flushleft style.

In theory, all that’s needed to activate the flushleft mode in the AMS docu-
ment classes is something like this:

\DeclareOption{fleqn}{%

\AtBeginDocument{\@mathmargin30pt\relax}%

}

(In fact, unless the document class wants to specify the \@mathmargin, it doesn’t
need to do anything with the fleqn option.)

\newif\if@fleqn

%

\newskip\@mathmargin

\@mathmargin\@centering

%

\DeclareOption{fleqn}{%

\@fleqntrue

\@mathmargin = -1sp

\let\mathindent=\@mathmargin

\AtBeginDocument{%

\ifdim\@mathmargin= -1sp

\@mathmargin\leftmargini minus\leftmargini

\fi

}%

}

DMJ: This ensures that \@mathmargin is given some sort of sensible default
if the class doesn’t specify one, while still allowing a user to override the default
value in their document preamble. (Incidentally, I’m initializing \@mathmargin

to \leftmargini for compatibility with fleqn.clo, but I’m not at all convinced
that’s the right thing to do.)

The next question is what happens when amsmath is used with one of the
standard classes. Unfortunately, LATEX implements fleqn somewhat clumsily;
instead of parameterizing the definitions of the math structures (as I’ve at-
tempted to do here), fleqn.clo declares a dimen \mathindent that is much
like my \@mathmargin and then redefines \[, \], \equation, and \eqnarray.
This means that things could get rather messy in 2.09 compatibility mode, since
fleqn.clo might be loaded after amsmath.sty, which could cause a real mess.

[mjd,1999/07/07]: Let \mathindent= \@mathmargin as envisioned by DMJ.
Compatibility-mode documents will all use the amstex package, not amsmath.
There is a remote chance of a problem if someone makes an assignment to
\mathindent in a way that implicitly assumes it is a dimen register (inasmuch
as it has now become a skip register), and the string “plus” follows in the input

4 THE AMSMATH PACKAGE

stream, but if someone’s document croaks in that way, I think they will just
have to bite the bullet and fix it. The alternative is to penalize a lot of other
users with a known handicap.

5 Spacing around \aligned and \gathered

[dpc, 2016] Option to control the space to the left of aligned and gathered.
Previously \aligned and \gathered inserted a thin space on their left but

not their right, there is no good reason for this that anyone can remember, it has
just always been that way inherited from amstex. The usual advice to authors
has been to use \!\begin{aligned} to get better spacing.

Here introduce:
alignedleftspaceyes to keep the behaviour of adding this space.
alignedleftspaceno to disable adding this space.
alignedleftspaceyesifneg the new default behaviour, do not add the

space unless the environment is preceded by a negative skip or kern, so that
\!\begin{aligned} works as before.

\DeclareOption{alignedleftspaceyes}{\def\alignedspace@left{\null\,}}

\DeclareOption{alignedleftspaceno}{\def\alignedspace@left{\null}}

\DeclareOption{alignedleftspaceyesifneg}{%

\def\alignedspace@left{%

\edef\@tempa{\expandafter\@car\the\lastskip\@nil}%

\if-\@tempa\null\,%

\else

\edef\@tempa{\expandafter\@car\the\lastkern\@nil}%

\if-\@tempa\null\,%

\else\null

\fi

\fi}%

}

\DeclareOption{?}{}

\ExecuteOptions{%

nointlimits,sumlimits,namelimits,centertags,alignedleftspaceyesifneg}

The \par after \ProcessOptions is to ensure the correct line number on screen
if an error occurs during option processing; otherwise the lookahead for a *

option would result in TEX showing the following line instead.

\ProcessOptions\par

\@ifpackagewith{amsmath}{?}{%

\typeout{^^J%

Documentation for the amsmath package is found in amsldoc.dvi^^J%

(or .pdf or .tex).^^J%

^^J%

See also https://www.ams.org/tex/amslatex.html.^^J%

^^J%

Note: Using the first edition of The LaTeX Companion (1994) without^^J%

errata as a guide for amsmath use is not recommended.^^J%

6. CALL SOME OTHER PACKAGES 5

}%

}{%

\typeout{%

For additional information on amsmath, use the \lq ?\rq\space option.%

}%

}

Processing to handle the cmex10 option is a little tricky because of different
possible loading orders for amsmath and amsfonts. The package amsmath sets
the \cmex@opt flag to 0, 7 or 10, and in the past the package amsfonts did set
the flag to 1 or 0. These days it always sets it to 10. The situation is a bit
unsettled but we don’t own amsfonts.

\ifnum\cmex@opt=7 \relax

\DeclareFontShape{OMX}{cmex}{m}{n}{%

<-8>cmex7<8>cmex8<9>cmex9%

<10><10.95><12><14.4><17.28><20.74><24.88>cmex10%

}{}%

\expandafter\let\csname OMX/cmex/m/n/10\endcsname\relax

\else

\ifnum\cmex@opt=\z@ % need to override cmex7 fontdef from amsfonts

Force reloading of the OMX/cmex font definition file.

\begingroup

\fontencoding{OMX}\fontfamily{cmex}%

\expandafter\let\csname OMX+cmex\endcsname\relax

\try@load@fontshape

\endgroup

The cmex10 font gets special preload handling in the building of the LATEX
format file, need an extra bit here to work around that.

\expandafter\let\csname OMX/cmex/m/n/10\endcsname\relax

\def\cmex@opt{10}%

\fi

\fi

6 Call some other packages
The amstext package provides the \text command. The amsbsy package pro-
vides \boldsymbol and \pmb. (Since 1997 it is usually better to use the bm pack-
age instead; but I think we have to keep amsbsy here for backward compatibility
[mjd,1999/11/19].) The amsopn package provides \DeclareMathOperator.

\RequirePackage{amstext}[1995/01/25]

%\RequirePackage{amsgen}[1995/01/25] % already loaded by amstext

\RequirePackage{amsbsy}[1995/01/20]

\RequirePackage{amsopn}[1995/01/20]

7 Miscellaneous
\ams@newcommand Where stix and amsmath define the same control sequences, we want to avoid

inadvertently overriding stix’s definitions. If stix is loaded before amsmath,

6 THE AMSMATH PACKAGE

the following conditional takes care of the problem. There is similar code in the
stix package in case amsmath is loaded first.

\@ifpackageloaded{stix}{%

\let\ams@newcommand\providecommand

\let\ams@renewcommand\providecommand

\let\ams@def\providecommand

\let\ams@DeclareRobustCommand\providecommand

}{%

\let\ams@newcommand\newcommand

\let\ams@renewcommand\renewcommand

\let\ams@def\def

\let\ams@DeclareRobustCommand\DeclareRobustCommand

}

\@amsmath@err Defining this error function saves main mem.

\def\@amsmath@err{\PackageError{amsmath}}

\AmS The \AmS prefix can be used to construct the combination \AmS-\LaTeX.

\providecommand{\AmS}{{\protect\AmSfont

A\kern-.1667em\lower.5ex\hbox{M}\kern-.125emS}}

In \AmSfont we call cmsy directly in lieu of trying to access it through the math
fonts setup (e.g. \the\textfont2) because math fonts can’t be relied on to be
properly set up if we are not inside a math formula. This means that if this
command is used in a document where CM fonts are not wanted, then a font
substitution will need to be declared, e.g.:

\DeclareFontShape{OMS}{cmsy}{m}{n}{ <-> sub * xxx/m/n }{}

where xxx is some alternate font family. Taking the first letter of \f@series will
produce b or m for the most common values (b,bx,m). It may produce nonsense
for more unusual values of \f@series, so for safety’s sake we have an additional
\if test. We want to avoid setting the series to bx because in a standard LATEX
installation the combination cmsy/bx/n does not have a font definition, and the
user would get a font substitution warning on screen.

\newcommand{\AmSfont}{%

\usefont{OMS}{cmsy}{\if\@xp\@car\f@series\@nil bb\else m\fi}{n}}

\@mathmeasure The function \@mathmeasure takes three arguments; the third arg is typeset as
a math formula in an hbox, using arg #2 as the mathstyle, and the result is left
in the box named by the first arg. It is assumed that we are already in math
mode, so we can turn off \everymath (in particular, \check@mathfonts).

As of 2018/12 release we don’t turn off \evermath as this optimization can
be harmful.

\ifx\leavevmode@ifvmode\@undefined % kernel is < 2018/12

\def\@mathmeasure#1#2#3{\setbox#1\hbox{\frozen@everymath\@emptytoks

\m@th$#2#3$}}

\else

7. MISCELLANEOUS 7

\def\@mathmeasure#1#2#3{\setbox#1\hbox{%

\m@th$#2#3$}}

\fi

The \inf@bad constant is for testing overfull boxes.

\@ifundefined{inf@bad}{%

\newcount\inf@bad \inf@bad=1000000 \relax

}{}

7.1 Math spacing commands
\tmspace

\,

\thinspace

\!

\negthinspace

\:

\medspace

\negmedspace

\;

\thickspace

\negthickspace

Here we fill in some gaps in the set of spacing commands, and make them
all work equally well in or out of math. We want all these commands to be
robust but declaring them all with \DeclareRobustCommand uses up an control
sequence name per command; to avoid this, we define a common command
\tmspace (text-or-math space) which carries the robustness burden for all of
them. The standard \relax before the \ifmmode is not necessary because of
the \protect added by \DeclareRobustCommand.

We start by undefining a number of commands (which in a current LATEX
kernel will be defined, so that the \DeclareRobustCommand declarations below
do not add a “Command redefined” info into the log.

\let\tmspace\@undefined

\let\,\@undefined

\let\!\@undefined

\let\:\@undefined

\let\negmedspace\@undefined

\let\negthickspace\@undefined

\ifx\leavevmode@ifvmode\@undefined

\DeclareRobustCommand\tmspace[3]{%

\ifmmode\mskip#1#2\else\kern#1#3\fi\relax}

\else

\DeclareRobustCommand\tmspace[3]{%

\ifmmode\mskip#1#2\else\leavevmode@ifvmode\kern#1#3\fi\relax}

\fi

\DeclareRobustCommand\,{\tmspace+\thinmuskip{.1667em}}

\let\thinspace\,

\DeclareRobustCommand\!{\tmspace-\thinmuskip{.1667em}}

\let\negthinspace\!

\DeclareRobustCommand\:{\tmspace+\medmuskip{.2222em}}

\let\medspace\:

\DeclareRobustCommand\negmedspace{\tmspace-\medmuskip{.2222em}}

\renewcommand\;{\tmspace+\thickmuskip{.2777em}}

\let\thickspace\;

\DeclareRobustCommand\negthickspace{\tmspace-\thickmuskip{.2777em}}

\mspace And while we’re at it, why don’t we provide an equivalent of \hspace for math
mode use. This allows use of mu units in (for example) constructing compound
math symbols.

\newcommand{\mspace}[1]{\mskip#1\relax}

8 THE AMSMATH PACKAGE

7.2 Vertical bar symbols
\lvert

\rvert

\lVert

\rVert

Add left/right specific versions of \vert, \Vert. Don’t assume the delimiter
codes are the CM defaults.

\def\@tempa#1#2\@nil{%

\ifx\delimiter#1\@tempcnta#2\relax\else\@tempcnta\z@\fi

}

\@xp\@tempa\vert\@empty\@nil

\ifnum\@tempcnta>\z@

\advance\@tempcnta "4000000

Use \protected on the new delimiters.

\protected\xdef\lvert{\delimiter\number\@tempcnta\space }

\advance\@tempcnta "1000000

\protected\xdef\rvert{\delimiter\number\@tempcnta\space }

\else

\ifx\@@undefined\lvert

% Fall back to cmex encoding since we don’t know what else to do.

\DeclareMathDelimiter{\lvert}

{\mathopen}{symbols}{"6A}{largesymbols}{"0C}

\DeclareMathDelimiter{\rvert}

{\mathclose}{symbols}{"6A}{largesymbols}{"0C}

\fi

\fi

\@xp\@tempa\Vert\@empty\@nil

\ifnum\@tempcnta>\z@

\advance\@tempcnta "4000000

\protected\xdef\lVert{\delimiter\number\@tempcnta\space }

\advance\@tempcnta "1000000

\protected\xdef\rVert{\delimiter\number\@tempcnta\space }

\else

\ifx\@@undefined\lVert

\DeclareMathDelimiter{\lVert}

{\mathopen}{symbols}{"6B}{largesymbols}{"0D}

\DeclareMathDelimiter{\rVert}

{\mathclose}{symbols}{"6B}{largesymbols}{"0D}

\fi

\fi

7.3 Fractions
Bury the generalized fraction primitives \over, \atop, etc., because of their
bizarre syntax, which is decidedly out of place in a LATEX document.

\@saveprimitive\over\@@over

\@saveprimitive\atop\@@atop

\@saveprimitive\above\@@above

\@saveprimitive\overwithdelims\@@overwithdelims

\@saveprimitive\atopwithdelims\@@atopwithdelims

\@saveprimitive\abovewithdelims\@@abovewithdelims

7. MISCELLANEOUS 9

\primfrac If someone insists on using \over, give a warning the first time and then resur-
rect the old definition. Laissez-faire policy.

\DeclareRobustCommand{\primfrac}[1]{%

\PackageWarning{amsmath}{%

Foreign command \@backslashchar#1;\MessageBreak

\protect\frac\space or \protect\genfrac\space should be used instead%

\MessageBreak

}

\global\@xp\let\csname#1\@xp\endcsname\csname @@#1\endcsname

\csname#1\endcsname

}

\renewcommand{\over}{\primfrac{over}}

\renewcommand{\atop}{\primfrac{atop}}

\renewcommand{\above}{\primfrac{above}}

\renewcommand{\overwithdelims}{\primfrac{overwithdelims}}

\renewcommand{\atopwithdelims}{\primfrac{atopwithdelims}}

\renewcommand{\abovewithdelims}{\primfrac{abovewithdelims}}

\frac calls \@@over directly instead of via \genfrac, for better speed be-
cause it is so common. \tfrac and \dfrac are abbreviations for some commonly
needed mathstyle overrides. To conserve csnames we avoid making \dfrac and
\tfrac robust (\genfrac is itself robust).

%

\ifx\directlua\@undefined

\DeclareRobustCommand{\frac}[2]{{\begingroup#1\endgroup\@@over#2}}

\else

\DeclareRobustCommand{\frac}[2]{{\Ustack{\begingroup#1\endgroup\@@over#2}}}

\fi

\DeclareRobustCommand{\dfrac}{\genfrac{}{}{}0}

\DeclareRobustCommand{\tfrac}{\genfrac{}{}{}1}

The \binom command for binomial notation works like \frac and has similar
variants. Note that we do not use \z@ in \dbinom and \tbinom because they are
not top-level robust like \binom, and so the \z@ with the potentially problematic
@ character would become visible when writing one of those commands to a .toc
file.

\DeclareRobustCommand{\binom}{\genfrac()\z@{}}

\DeclareRobustCommand{\dbinom}{\genfrac(){0pt}0}

\DeclareRobustCommand{\tbinom}{\genfrac(){0pt}1}

\genfrac This command provides access to TEX’s generalized fraction primitives. Args:
#1 left delim, #2 right delim, #3 line thickness, #4 mathstyle override, #5 nu-
merator, #6 denominator. But we only read the first four args at first, in order
to give us a moment to select the proper generalized fraction primitive. Any
of those four args could be empty, and when empty the obvious defaults are
selected (no delimiters, default line thickness (normally .4pt), and no mathstyle
override).

the withdelims primitives do not work in xetex with OpenType fonts, and
the relevant font dimen parameters are often not set in luatex as there are no

10 THE AMSMATH PACKAGE

matching values in the OpenType Math table, so here we use variants that use
the font parameters if they are set, but scale using \left\right rather than
the withdelims primitives.

\ifx\directlua\@undefined

\ifx\XeTeXcharclass\@undefined

Classic version

\DeclareRobustCommand{\genfrac}[4]{%

\def\@tempa{#1#2}%

\edef\@tempb{\@nx\@genfrac\@mathstyle{#4}%

\csname @@\ifx @#3@over\else above\fi

\ifx\@tempa\@empty \else withdelims\fi\endcsname}

\@tempb{#1#2#3}}

\else

XeTeX version

\def\genfrac@rule#1#2#3#4{%

\hbox{$\left#1\vcenter{\hrule \@width\z@

\@height

\ifdim\fontdimen#2#3\tw@=\z@

#4\fontdimen6#3\tw@

\else

\fontdimen#2#3\tw@

\fi

}\right.$}}

\def\genfrac@choice#1#2{%

\ifx @#2@\else

\ifx c#1\kern-\nulldelimiterspace\fi

{\delimitershortfall\z@\delimiterfactor\@m

\mathsurround\z@\nulldelimiterspace\z@

\mathchoice

{\genfrac@rule{#2}{20}\textfont{2.39}}%

{\genfrac@rule{#2}{21}\textfont{1}}%

{\genfrac@rule{#2}{21}\scriptfont{1.45}}%

{\genfrac@rule{#2}{21}\scriptscriptfont{1.35}}%

}%

\ifx o#1\kern-\nulldelimiterspace\fi

\fi

}

\DeclareRobustCommand{\genfrac}[6]{{%

\@mathstyle{#4}%

\genfrac@choice o{#1}%

{\begingroup#5\endgroup\ifx @#3@\@@over\else\@@above\fi#3\relax#6}%

\genfrac@choice c{#2}%

}}

\fi

\else

7. MISCELLANEOUS 11

LuaTeX version

\def\genfrac@rule#1#2#3{%

\hbox{$\left#1\vcenter{\hrule \@width\z@

\@height

\ifdim\Umathfractiondelsize#2=\z@

#3\fontdimen6#3\tw@

\else

\Umathfractiondelsize#2%

\fi

}\right.$}}

\def\genfrac@choice#1#2{%

\ifx @#2@\else

\ifx c#1\kern-\nulldelimiterspace\fi

{\delimitershortfall\z@\delimiterfactor\@m

\mathsurround\z@\nulldelimiterspace\z@

\mathchoice

{\genfrac@rule{#2}\displaystyle{2.39}}%

{\genfrac@rule{#2}\textstyle{1}}%

{\genfrac@rule{#2}\scriptstyle{1.45}}%

{\genfrac@rule{#2}\scriptscriptstyle{1.35}}%

}%

\ifx o#1\kern-\nulldelimiterspace\fi

\fi

}

\DeclareRobustCommand{\genfrac}[6]{{%

\@mathstyle{#4}%

\genfrac@choice o{#1}%

{\Ustack {\begingroup#5\endgroup\ifx @#3@\@@over\else\@@above\fi#3\relax#6}}%

\genfrac@choice c{#2}%

}}

\fi

End of test for LuaTEX/XeTEX.
\@genfrac takes the preceding arguments and reads the numerator and de-

nominator. Note that there’s no convenient way to make the numerator and
denominator contents displaystyle, through this interface.

Args: #1 mathstyle, #2 fraction primitive, #3 delimiters and rule thickness,
#4 numerator, #5 denominator.

\def\@genfrac#1#2#3#4#5{{#1{\begingroup#4\endgroup#2#3\relax#5}}}

Empty mathstyle arg: no change; 0 = displaystyle, 1 = textstyle, 2 = script-
style, 3 = scriptscriptstyle.

\def\@mathstyle#1{%

\ifx\@empty#1\@empty\relax

\else\ifcase#1\displaystyle % case 0

\or\textstyle\or\scriptstyle\else\scriptscriptstyle\fi\fi}

12 THE AMSMATH PACKAGE

7.4 Sums and Integrals
Default value for sum limits is \displaylimits, see option ‘nosumlimits’.

We redefine all the cumulative operator symbols to use \slimits@ so that
switching between \displaylimits and \nolimits can be controlled by pack-
age options. Also add \DOTSB for the benefit of the dots lookahead. But we’d
better make sure \coprod and the others are simple mathchars; if not, the
attempted changes will probably fail miserably.

\begingroup

\edef\@tempa{\string\mathchar"}

\edef\@tempd{\string\Umathchar"}

\def\@tempb#1"#2\@nil{#1"}

\edef\@tempc{\expandafter\@tempb\meaning\coprod "\@nil}

\ifx\@tempc\@tempd\let\@tempc\@tempa\fi

\ifx\@tempa\@tempc

\global\let\coprod@\coprod

\gdef\coprod{\DOTSB\coprod@\slimits@}

\global\let\bigvee@\bigvee

\gdef\bigvee{\DOTSB\bigvee@\slimits@}

\global\let\bigwedge@\bigwedge

\gdef\bigwedge{\DOTSB\bigwedge@\slimits@}

\global\let\biguplus@\biguplus

\gdef\biguplus{\DOTSB\biguplus@\slimits@}

\global\let\bigcap@\bigcap

\gdef\bigcap{\DOTSB\bigcap@\slimits@}

\global\let\bigcup@\bigcup

\gdef\bigcup{\DOTSB\bigcup@\slimits@}

\global\let\prod@\prod

\gdef\prod{\DOTSB\prod@\slimits@}

\global\let\sum@\sum

\gdef\sum{\DOTSB\sum@\slimits@}

\global\let\bigotimes@\bigotimes

\gdef\bigotimes{\DOTSB\bigotimes@\slimits@}

\global\let\bigoplus@\bigoplus

\gdef\bigoplus{\DOTSB\bigoplus@\slimits@}

\global\let\bigodot@\bigodot

\gdef\bigodot{\DOTSB\bigodot@\slimits@}

\global\let\bigsqcup@\bigsqcup

\gdef\bigsqcup{\DOTSB\bigsqcup@\slimits@}

\fi

\endgroup

7.5 Roots and radicals
\root This root stuff needs syntax work and implementation work. Surely something

more compact can be done?? [mjd, 1994/09/05]

\newcommand{\leftroot}{\@amsmath@err{\Invalid@@\leftroot}\@eha}

\newcommand{\uproot}{\@amsmath@err{\Invalid@@\uproot}\@eha}

\newcount\uproot@

7. MISCELLANEOUS 13

\newcount\leftroot@

\renewcommand{\root}{\relaxnext@

\DN@{\ifx\@let@token\uproot\let\next@\nextii@\else

\ifx\@let@token\leftroot\let\next@\nextiii@\else

\let\next@\plainroot@\fi\fi\next@}%

\def\nextii@\uproot##1{\uproot@##1\relax\FN@\nextiv@}%

\def\nextiv@{\ifx\@let@token\@sptoken\DN@. {\FN@\nextv@}\else

\DN@.{\FN@\nextv@}\fi\next@.}%

\def\nextv@{\ifx\@let@token\leftroot\let\next@\nextvi@\else

\let\next@\plainroot@\fi\next@}%

\def\nextvi@\leftroot##1{\leftroot@##1\relax\plainroot@}%

\def\nextiii@\leftroot##1{\leftroot@##1\relax\FN@\nextvii@}%

\def\nextvii@{\ifx\@let@token\@sptoken

\DN@. {\FN@\nextviii@}\else

\DN@.{\FN@\nextviii@}\fi\next@.}%

\def\nextviii@{\ifx\@let@token\uproot\let\next@\nextix@\else

\let\next@\plainroot@\fi\next@}%

\def\nextix@\uproot##1{\uproot@##1\relax\plainroot@}%

\bgroup\uproot@\z@\leftroot@\z@\FN@\next@}

\def\plainroot@#1\of#2{\setbox\rootbox\hbox{%

$\m@th\scriptscriptstyle{#1}$}%

\mathchoice{\r@@t\displaystyle{#2}}{\r@@t\textstyle{#2}}

{\r@@t\scriptstyle{#2}}{\r@@t\scriptscriptstyle{#2}}\egroup}

Name change from \@@sqrt to \sqrtsign happened in the 1995/12/01 re-
lease of LATEX. If we were to assume that \sqrtsign is defined then someone
with the 1995/06/01 release of LATEX would have trouble using this package.

\@ifundefined{sqrtsign}{\let\sqrtsign\@@sqrt}{}

\def\r@@t#1#2{\setboxz@h{$\m@th#1\sqrtsign{#2}$}%

\dimen@\ht\z@\advance\dimen@-\dp\z@

\setbox\@ne\hbox{$\m@th#1\mskip\uproot@ mu$}%

\advance\dimen@ by1.667\wd\@ne

\mkern-\leftroot@ mu\mkern5mu\raise.6\dimen@\copy\rootbox

\mkern-10mu\mkern\leftroot@ mu\boxz@}

7.6 Et cetera
Specific names for the variant italic cap Greek letters are not defined by LATEX.
If no preceding package defined these, we will define them now.

\@ifundefined{varGamma}{%

\DeclareMathSymbol{\varGamma}{\mathord}{letters}{"00}

\DeclareMathSymbol{\varDelta}{\mathord}{letters}{"01}

\DeclareMathSymbol{\varTheta}{\mathord}{letters}{"02}

\DeclareMathSymbol{\varLambda}{\mathord}{letters}{"03}

\DeclareMathSymbol{\varXi}{\mathord}{letters}{"04}

\DeclareMathSymbol{\varPi}{\mathord}{letters}{"05}

\DeclareMathSymbol{\varSigma}{\mathord}{letters}{"06}

\DeclareMathSymbol{\varUpsilon}{\mathord}{letters}{"07}

\DeclareMathSymbol{\varPhi}{\mathord}{letters}{"08}

\DeclareMathSymbol{\varPsi}{\mathord}{letters}{"09}

14 THE AMSMATH PACKAGE

\DeclareMathSymbol{\varOmega}{\mathord}{letters}{"0A}

}{}

\overline AMS-TEX redefines \overline as shown here, for reasons that are probably less
important in LATEX: Make it read its argument as a macro argument rather than
a “math field” (The TEXbook, Chapter 26), to avoid problems when something
that is apparently a single symbol is actually a non-simple macro (e.g., \dag)
and is given as a single-token argument without enclosing braces.

\@saveprimitive\overline\@@overline

\DeclareRobustCommand{\overline}[1]{\@@overline{#1}}

\boxed The \boxed command is specifically intended to put a box around an equation
or piece of an equation. (Not including the equation number.) This isn’t trivial
for end-users to do it properly with \fbox so we provide a command for them.

\DeclareRobustCommand{\boxed}[1]{\fbox{\m@th$\displaystyle#1$}}

\implies

\impliedby \newcommand{\implies}{\DOTSB\;\Longrightarrow\;}

\newcommand{\impliedby}{\DOTSB\;\Longleftarrow\;}

\And

\def\And{\DOTSB\;\mathchar"3026 \;}

\nobreakdash The command \nobreakdash is designed only for use before a hyphen or dash
(-, --, or ---). Setting the hyphen in a box and then unboxing it means that
the normal penalty will not be added after it—and if the penalty is not there a
break will not be taken (unless an explicit penalty or glue follows, thus the final
\nobreak).

\newcommand{\nobreakdash}{\leavevmode

\toks@\@emptytoks \def\@tempa##1{\toks@\@xp{\the\toks@-}\FN@\next@}%

\DN@{\ifx\@let@token-\@xp\@tempa

\else\setboxz@h{\the\toks@\nobreak}\unhbox\z@\fi}%

\FN@\next@

}

\colon \colon is for a colon in math that resembles a text colon: small space on the
left, larger space on the right. The : character by itself is treated as a \mathrel
i.e. large, equal spacing on both sides.

\DeclareRobustCommand{\colon}{\nobreak\mskip2mu\mathpunct{}\nonscript

\mkern-\thinmuskip{:}\mskip6muplus1mu\relax}

8 Ellipsis dots
We can’t use \newif for \ifgtest@ because we want to include \global in the
definitions of \gtest@true and \gtest@false.

\let\ifgtest@\iffalse % initial value

\def\gtest@true{\global\let\ifgtest@\iftrue}

\def\gtest@false{\global\let\ifgtest@\iffalse}

8. ELLIPSIS DOTS 15

\let\DOTSI\relax

\let\DOTSB\relax

\let\DOTSX\relax

{\uccode‘7=‘\\ \uccode‘8=‘m \uccode‘9=‘a \uccode‘0=‘t \uccode‘!=‘h

\uppercase{%

\gdef\math@#1#2#3#4#5#6\math@{\gtest@false\ifx 7#1\ifx 8#2%

\ifx 9#3\ifx 0#4\ifx !#5\xdef\meaning@{#6}\gtest@true

\fi\fi\fi\fi\fi}}}

{\uccode‘7=‘c \uccode‘8=‘h \uccode‘9=‘\"

\uppercase{\gdef\mathch@#1#2#3#4#5#6\mathch@{\gtest@false

\ifx 7#1\ifx 8#2\ifx 9#5\gtest@true\xdef\meaning@{9#6}\fi\fi\fi}}}

{\uccode‘(=‘U \uccode‘)=‘m

\uppercase{\gdef\Umathch@#1#2#3#4"#5"#6\Umathch@{\gtest@false

\ifx(#2\ifx)#3\gtest@true

\ifcase"#5 \or\or\gdef\thedots@{\dotsb@}\or\gdef\thedots@{\dotsb@}\fi

\fi\fi

}}}

For Unicode TeXs, if the next token is a character token look up the
(U)mathcode. Do not do this for classic TeX for compatibility reasons.

\ifx\Umathcharnumdef\@undefined

\gdef\thecharacter@#1\thecharacter@{}

\else

{\uccode‘(=‘t \uccode‘)=‘c

\uppercase{\gdef\thecharacter@#1#2#3#4#5\thecharacter@{%

\ifx(#1\ifx)#4%

\@xp\getmathcode@\meaning@\getmathcode@

\fi\fi

}}}

\def\getmathcode@#1 #2 #3#4\getmathcode@{%

\Umathcharnumdef\@tempa\Umathcodenum‘#3\relax

\edef\meaning@{\meaning\@tempa}%

\@xp\Umathch@\meaning@\Umathch@

}

\fi

\newcount\classnum@

\def\getmathch@#1.#2\getmathch@{\classnum@#1 \divide\classnum@4096

\ifcase\number\classnum@\or\or\gdef\thedots@{\dotsb@}\or

\gdef\thedots@{\dotsb@}\fi}

{\uccode‘4=‘b \uccode‘5=‘i \uccode‘6=‘n

\uppercase{\gdef\mathbin@#1#2#3{\relaxnext@

\def\nextii@##1\mathbin@{\ifx\@sptoken\@let@token\gtest@true\fi}%

\gtest@false\DN@##1\mathbin@{}%

\ifx 4#1\ifx 5#2\ifx 6#3\DN@{\FN@\nextii@}\fi\fi\fi\next@}}}

{\uccode‘4=‘r \uccode‘5=‘e \uccode‘6=‘l

\uppercase{\gdef\mathrel@#1#2#3{\relaxnext@

\def\nextii@##1\mathrel@{\ifx\@sptoken\@let@token\gtest@true\fi}%

\gtest@false\DN@##1\mathrel@{}%

\ifx 4#1\ifx 5#2\ifx 6#3\DN@{\FN@\nextii@}\fi\fi\fi\next@}}}

16 THE AMSMATH PACKAGE

{\uccode‘5=‘m \uccode‘6=‘a \uccode‘7=‘c

\uppercase{\gdef\macro@#1#2#3#4\macro@{\gtest@false

\ifx 5#1\ifx 6#2\ifx 7#3\gtest@true

\xdef\meaning@{\macro@@#4\macro@@}\fi\fi\fi}}}

\def\macro@@#1->#2\macro@@{#2}

\newcount\DOTSCASE@

{\uccode‘6=‘\\ \uccode‘7=‘D \uccode‘8=‘O \uccode‘9=‘T \uccode‘0=‘S

\uppercase{\gdef\DOTS@#1#2#3#4#5{\gtest@false\DN@##1\DOTS@{}%

\ifx 6#1\ifx 7#2\ifx 8#3\ifx 9#4\ifx 0#5\let\next@\DOTS@@

\fi\fi\fi\fi\fi

\next@}}}

{\uccode‘3=‘B \uccode‘4=‘I \uccode‘5=‘X

\uppercase{\gdef\DOTS@@#1{\relaxnext@

\def\nextii@##1\DOTS@{\ifx\@sptoken\@let@token\gtest@true\fi}%

\DN@{\FN@\nextii@}%

\ifx 3#1\global\DOTSCASE@\z@\else

\ifx 4#1\global\DOTSCASE@\@ne\else

\ifx 5#1\global\DOTSCASE@\tw@\else\DN@##1\DOTS@{}%

\fi\fi\fi\next@}}}

{\uccode‘5=‘\\ \uccode‘6=‘n \uccode‘7=‘o \uccode‘8=‘t

\uppercase{\gdef\not@#1#2#3#4{\relaxnext@

\def\nextii@##1\not@{\ifx\@sptoken\@let@token\gtest@true\fi}%

\gtest@false\DN@##1\not@{}%

\ifx 5#1\ifx 6#2\ifx 7#3\ifx 8#4\DN@{\FN@\nextii@}\fi\fi\fi

\fi\next@}}}

{\uccode‘9=‘\l %

\uppercase{\gdef\striplong@#1#2#3\relax{%

\ifx9#2 \@xp\@xp\@xp\zap@to@space\fi}}}

\def\zap@to@space#1 {}

\def\keybin@{\gtest@true

\ifx\@let@token+\else\ifx\@let@token=\else

\ifx\@let@token<\else\ifx\@let@token>\else

\ifx\@let@token-\else\ifx\@let@token*\else\ifx\@let@token:\else

\gtest@false\fi\fi\fi\fi\fi\fi\fi}

Patch to ensure \@ldots is defined. (Name changed to \mathellipsis in Dec
94 release of LATEX.)

\@ifundefined{@ldots}{\def\@ldots{\mathellipsis}}{}

\ldots

\dots

Reiterate the standard definition of \ldots to keep it from being clobbered by
the redefinition of \dots.

\DeclareRobustCommand{\ldots}{%

\ifmmode \mathellipsis \else \textellipsis \fi

}

\DeclareRobustCommand{\dots}{%

\ifmmode \@xp\mdots@\else \@xp\textellipsis \fi

}

\def\tdots@{\leavevmode\unskip\relaxnext@

8. ELLIPSIS DOTS 17

\DN@{$\m@th\@ldots\,

\ifx\@let@token,\,$\else\ifx\@let@token.\,$\else

\ifx\@let@token;\,$\else\ifx\@let@token:\,$\else

\ifx\@let@token?\,$\else\ifx\@let@token!\,$\else

$ \fi\fi\fi\fi\fi\fi}%

\ \FN@\next@}

\def\mdots@{\FN@\mdots@@}

\def\mdots@@{\gdef\thedots@{\dotso@}%

\ifx\@let@token\boldsymbol

\gdef\thedots@\boldsymbol{\boldsymboldots@}%

\else

\ifx,\@let@token \gdef\thedots@{\dotsc}%

\else

\ifx\not\@let@token

\gdef\thedots@{\dotsb@}%

\else

\keybin@

\ifgtest@ % if \keybin@ test

\gdef\thedots@{\dotsb@}%

\else

\xdef\meaning@{\meaning\@let@token.}%

In previous versions \long macros were not seen by the lokkahead. That was
bad as this file uses \(re)newcommand for \implies etc.

\xdef\meaning@@{\@xp\striplong@\meaning@\relax\meaning@}%

\@xp\math@\meaning@\math@

\ifgtest@ % if \mathxxx test

\@xp\mathch@\meaning@\mathch@

\ifgtest@ % if \mathchar

\@xp\getmathch@\meaning@\getmathch@

\fi % end if \mathchar

\else % \not \mathxxx

Test for \Umathchar added.

\@xp\Umathch@\meaning@"0"\Umathch@

\ifgtest@ % if \Umathchar

\else % else not \Umathchar

\@xp\macro@\meaning@@\macro@

\ifgtest@ % if macro test

\@xp\not@\meaning@\not@

\ifgtest@ % if macro starts \not test

\gdef\thedots@{\dotsb@}%

\else% else not \not

\@xp\DOTS@\meaning@\DOTS@

\ifgtest@ % \if DOTS

\ifcase\number\DOTSCASE@ %ifcase dots

\gdef\thedots@{\dotsb@}%

\or\gdef\thedots@{\dotsi}\else

18 THE AMSMATH PACKAGE

\fi % endifcase dots

\else % not macro starts \DOTS

\@xp\math@\meaning@\math@

\ifgtest@ % \if macro starts \mathxxxx

\@xp\mathbin@\meaning@\mathbin@

\ifgtest@ % if macro starts \mathbin

\gdef\thedots@{\dotsb@}%

\else % not macro starting \mathbin

\@xp\mathrel@\meaning@\mathrel@

\ifgtest@ % if macro starts \mathrel

\gdef\thedots@{\dotsb@}%

\fi % endif macro starts \mathrel (no else)

\fi % endif macro starts \mathbin

\fi % endif macro starts with \mathxxx (no else)

\fi % endif macro starts \DOTS else

\fi % end macro starting \not \ifgtest@ test (no else)

Additional test for a catcode 12 character.

\else

\@xp\thecharacter@\meaning@\thecharacter@

\fi % end macro \ifgtest@ test (no else)

\fi % end if \Umathchar test

\fi % end \math@ \ifgtest@

\fi % end \keybin@ \ifgtest@ test (no else)

\fi % end if \not (no else)

\fi % end if comma (no else)

\fi % end if boldsymbol (no else)

\thedots@}

The = character is necessary in the two \let assignments in \boldsymboldots@,
because the symbol we are making bold might be an = sign.

\def\boldsymboldots@#1{%

\bold@true\let\@let@token=#1\let\delayed@=#1\mdots@@

\boldsymbol#1\bold@false}

The definition of \@cdots is merely the plain.tex definition of \cdots.

\ams@def\@cdots{\mathinner{\cdotp\cdotp\cdotp}}

\newcommand{\dotsi}{\!\@cdots}

\let\dotsb@\@cdots

If any new right delimiters are defined, they would need to be added to the
definition of \rightdelim@ in order for \dots to work properly in all cases.

\def\rightdelim@{\gtest@true

\ifx\@let@token)\else

\ifx\@let@token]\else

\ifx\@let@token\rbrack\else

\ifx\@let@token\}\else

\ifx\@let@token\rbrace\else

\ifx\@let@token\rangle\else

\ifx\@let@token\rceil\else

8. ELLIPSIS DOTS 19

\ifx\@let@token\rfloor\else

\ifx\@let@token\rgroup\else

\ifx\@let@token\rmoustache\else

\ifx\@let@token\right\else

\ifx\@let@token\bigr\else

\ifx\@let@token\biggr\else

\ifx\@let@token\Bigr\else

\ifx\@let@token\Biggr\else\gtest@false

\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi}

\def\extra@{%

\rightdelim@\ifgtest@

\else\ifx\@let@token$\gtest@true

\else\xdef\meaning@{\meaning\@let@token..........}%

\@xp\macro@\meaning@\macro@\ifgtest@

\@xp\DOTS@\meaning@\DOTS@

\ifgtest@

\ifnum\DOTSCASE@=\tw@\gtest@true\else\gtest@false

\fi\fi\fi\fi\fi}

\newif\ifbold@

\def\dotso@{\relaxnext@

\ifbold@

\let\@let@token\delayed@

\def\nextii@{\extra@\@ldots\ifgtest@\,\fi}%

\else

\def\nextii@{\DN@{\extra@\@ldots\ifgtest@\,\fi}\FN@\next@}%

\fi

\nextii@}

Why not save some tokens? (space vs. time).

\def\extrap@#1{%

\DN@{#1\,}%

\ifx\@let@token,\else

\ifx\@let@token;\else

\ifx\@let@token.\else\extra@

\ifgtest@\else

\let\next@#1\fi\fi\fi\fi\next@}

\cdots

\dotsb

\dotsm

\dotso

\dotsc

The \cdots command.

\ams@DeclareRobustCommand{\cdots}{\DN@{\extrap@\@cdots}\FN@\next@}

\let\dotsb\cdots

\let\dotsm\cdots

\DeclareRobustCommand{\dotso}{\relax

\ifmmode \DN@{\extrap@\@ldots}%

\else \let\next@\tdots@\fi

\FN@\next@}

\DeclareRobustCommand{\dotsc}{%

\DN@{\ifx\@let@token;\@ldots\,%

\else \ifx\@let@token.\@ldots\,%

\else \extra@\@ldots \ifgtest@\,\fi

\fi\fi}%

20 THE AMSMATH PACKAGE

\FN@\next@}

\longrightarrow

\Longrightarrow

\longleftarrow

\Longleftarrow

\longleftrightarrow

\Longleftrightarrow

\mapsto

\longmapsto

\hookrightarrow

\hookleftarrow

\iff

Various arrows.

\renewcommand{\longrightarrow}{%

\DOTSB\protect\relbar\protect\joinrel\rightarrow}

\renewcommand{\Longrightarrow}{%

\DOTSB\protect\Relbar\protect\joinrel\Rightarrow}

\renewcommand{\longleftarrow}{%

\DOTSB\leftarrow\protect\joinrel\protect\relbar}

\renewcommand{\Longleftarrow}{%

\DOTSB\Leftarrow\protect\joinrel\protect\Relbar}

\renewcommand{\longleftrightarrow}{\DOTSB\leftarrow\joinrel\rightarrow}

\renewcommand{\Longleftrightarrow}{\DOTSB\Leftarrow\joinrel\Rightarrow}

\renewcommand{\mapsto}{\DOTSB\mapstochar\rightarrow}

\renewcommand{\longmapsto}{\DOTSB\mapstochar\longrightarrow}

\renewcommand{\hookrightarrow}{\DOTSB\lhook\joinrel\rightarrow}

\renewcommand{\hookleftarrow}{\DOTSB\leftarrow\joinrel\rhook}

\renewcommand{\iff}{\DOTSB\;\Longleftrightarrow\;}

\doteq The \doteq command formerly used \buildrel; we avoid that because it re-
quires ‘\over’ as part of its syntax. Use 0pt instead of \z@ for robustitude.

\renewcommand{\doteq}{%

\DOTSB\mathrel{\mathop{\kern0pt =}\limits^{\textstyle.}}}

9 Integral signs
\if@display The straightforward \ifinner test to see if the current math context is non-

display, fails if, for instance, we are typesetting a multiline display within an
\halign, with the pieces going into constructions like

$\displaystyle...$

So we need a better test to find out if we are ‘in a display’. We therefore create
\if@display.

\newif\if@display

\everydisplay\@xp{\the\everydisplay \@displaytrue}

\int

\oint

\iint

\iiint

\iiiint

\idotsint

Default value for integral limits is \nolimits, see the definition of the ‘nointlim-
its’ option.

\renewcommand{\int}{\DOTSI\intop\ilimits@}

\renewcommand{\oint}{\DOTSI\ointop\ilimits@}

\def\intkern@{\mkern-6mu\mathchoice{\mkern-3mu}{}{}{}}

\def\intdots@{\mathchoice{\@cdots}%

{{\cdotp}\mkern1.5mu{\cdotp}\mkern1.5mu{\cdotp}}%

{{\cdotp}\mkern1mu{\cdotp}\mkern1mu{\cdotp}}%

{{\cdotp}\mkern1mu{\cdotp}\mkern1mu{\cdotp}}}

%

\ams@newcommand{\iint}{\DOTSI\MultiIntegral{2}}

10. SIZE DEPENDENT DEFINITIONS 21

\ams@newcommand{\iiint}{\DOTSI\MultiIntegral{3}}

\ams@newcommand{\iiiint}{\DOTSI\MultiIntegral{4}}

\newcommand{\idotsint}{\DOTSI\MultiIntegral{0}}

\MultiIntegral If the \limits option is applied, use \mathop and fudge the left-hand space a
bit to make the subscript visually centered.

#1 is the multiplicity.

\DeclareRobustCommand{\MultiIntegral}[1]{%

\edef\ints@c{\noexpand\intop

\ifnum#1=\z@\noexpand\intdots@\else\noexpand\intkern@\fi

\ifnum#1>\tw@\noexpand\intop\noexpand\intkern@\fi

\ifnum#1>\thr@@\noexpand\intop\noexpand\intkern@\fi

\noexpand\intop

\noexpand\ilimits@

}%

\futurelet\@let@token\ints@a

}

\def\ints@a{%

\ifx\limits\@let@token \ints@b

\else \ifx\displaylimits\@let@token \ints@b

\else\ifx\ilimits@\displaylimits \ints@b

\fi\fi\fi

\ints@c

}

\def\ints@b{%

\mkern-7mu\mathchoice{\mkern-2mu}{}{}{}%

\mathop\bgroup

\mkern7mu\mathchoice{\mkern2mu}{}{}{}%

\let\ilimits@\egroup

}%

10 Size dependent definitions
We now define all stuff which has to change whenever a new math size is to be
activated. LATEX provides a hook called \every@math@size to support such a
need. All assignments in the \every@math@size hook that need to take outside
effect should be global.

10.1 Struts for math
The various kinds of struts could use some analysis and perhaps consolidation.

For example perhaps the \bBigg delimiters could use

1.2\ht\strutbox (1.8, 2.4, 3.0)

instead of

1.0\big@size (1.5, 2.0, 2.5)

22 THE AMSMATH PACKAGE

since \strut is reset with every size change [mjd, 1994/10/07]. But this change
would introduce the possibility of changed line and page breaks in existing
documents, so would need to be handled with care.

\Mathstrut@

\Mathstrutbox@

\resetMathstrut@

Here comes the code for Spivak’s \Mathstrut@.

\newbox\Mathstrutbox@

\setbox\Mathstrutbox@=\hbox{}

\def\Mathstrut@{\copy\Mathstrutbox@}

The setting of the height and depth of the \Mathstrutbox@ is done in the
\every@math@size hook since it depends on the height of a paren. As
\every@math@size is triggered by $ after a font size change, we want to avoid
using another math formula $...$ to measure the math paren height; instead
we go through the mathcode of the (character. We assume that the mathcode
has a leading hex digit 4 indicating ‘open delimiter’; this allows us to make a
relatively simple function to get the correct font and character position.

Original code assuming \mathcode is kept for 8bit TEX. Unicode TEX uses
\Umathcharnumdef which works for xetex and luatex, which use different forms
for \mathchardef. (New luatex always reports definitions using \Umathchardef
syntax even if \mathchardef used.)

The unicode version uses e-tex \fontcharht to avoid boxing which could
also be done for pdftex, but not done here.

\ifx\Umathcharnumdef\@undefined

Original code

\def\resetMathstrut@{%

\begingroup

\setbox\z@\hbox{%

\mathchardef\@tempa\mathcode‘\(\relax

\def\@tempb##1"##2##3{\the\textfont"##3\char"}%

\expandafter\@tempb\meaning\@tempa \relax

}%

\edef\@tempa{%

\ht\Mathstrutbox@\the\ht\z@\relax

\dp\Mathstrutbox@\the\dp\z@\relax}%

\expandafter\endgroup\@tempa

}

\else

xetex/luatex version

\def\resetMathstrut@{%

\begingroup

\Umathcharnumdef\@tempa\Umathcodenum‘\(\relax

\def\@tempb##1"##2"##3"##4\relax{%

\endgroup

\ht\Mathstrutbox@=\fontcharht\textfont"##3 "##4\relax

\dp\Mathstrutbox@=\fontchardp\textfont"##3 "##4\relax}%

\expandafter\@tempb\meaning\@tempa \relax

}

10. SIZE DEPENDENT DEFINITIONS 23

\fi

These height and depth assignments are implicitly global.

\addto@hook\every@math@size{\resetMathstrut@}

\strut@

\strutbox@

Next follows a special internal strut which is supposed to match the height and
the depth of a normal \strut minus \normallineskiplimit according to M.
Spivak.

This should really go into the definition of \size@update, and then the box
reset could be local; but \size@update doesn’t have any hook and is handled in
such a way that it cannot even be changed except by changing \set@fontsize.
So instead we put \reset@strutbox@ into \every@math@size and make it
global. Then because of some complications in the way \glb@settings and
\check@mathfonts work, we have to re-invoke it at the beginning of every en-
vironment that might use \strut@. Fortunately this can be achieved (more or
less) through the \spread@equation hook. [mjd,2000/03/10]

\newbox\strutbox@

\def\strut@{\copy\strutbox@}

\def\reset@strutbox@{%

\global\setbox\strutbox@\hbox{%

\lower.5\normallineskiplimit

\vbox{\kern-\normallineskiplimit\copy\strutbox}}}

\addto@hook\every@math@size{\reset@strutbox@}

\AtBeginDocument{\reset@strutbox@}

10.2 Big delimiters
We are now going to redefine the plain TEX commands \big, \bigl, etc., to
produce different results in different sizes. Actually we only have to define \big,
\Big, etc., since they are used to construct the directional versions \bigl, \bigr,
and the rest.

\big

\Big

\bigg

\Bigg

To save token space we put everything into the common macro \bBigg@. The
macros are now simply a call to \bBigg@ with a factor to determine the correct
height of the delimiter as an argument. This code should better go into a future
version of the LATEX kernel; the macro \n@space is then superfluous (since it
is only used once) and should be removed to avoid wasting hash table space
unnecessarily.

\DeclareRobustCommand{\big}{\bBigg@\@ne}

\DeclareRobustCommand{\Big}{\bBigg@{1.5}}

\DeclareRobustCommand{\bigg}{\bBigg@\tw@}

\DeclareRobustCommand{\Bigg}{\bBigg@{2.5}}

\bBigg@ Now we tackle the macro which has to do the real work. It actually has two
arguments, the factor and the wanted delimiter.

\ifx\leavevmode@ifvmode\@undefined

\def\bBigg@#1#2{%

24 THE AMSMATH PACKAGE

We start with an extra set of braces because we want constructions like
\def\bigl{\mathopen\big} to work without the overhead of extra arguments.

{\@mathmeasure\z@{\nulldelimiterspace\z@}%

{\left#2\vcenter to#1\big@size{}\right.}%

\box\z@}}

\else

\def\bBigg@#1#2{\leavevmode@ifvmode

{\@mathmeasure\z@{\nulldelimiterspace\z@}%

{\left#2\vcenter to#1\big@size{}\right.}%

\box\z@}}

\fi

\big@size \big@size needs to be set to 1.2 times the height of a math paren. This height
is already recorded in \Mathstrutbox@.

\addto@hook\every@math@size{%

\global\big@size 1.2\ht\Mathstrutbox@

\global\advance\big@size 1.2\dp\Mathstrutbox@ }

\newdimen\big@size

11 Math accents
We want to change the leading digit of math accents to be \accentclass@ so
that it can vary according to certain internal purposes.

\def\accentclass@{7}

\def\noaccents@{\def\accentclass@{0}}

There are a few ⟨math alphabet⟩s in the standard fonts where we have to
change the extra macros because the standard definitions don’t account for
these accent problems. The first is for the \mathit command.

\DeclareFontEncoding{OML}{}{\noaccents@}

The next one corrects the \cal alphabet.

\DeclareFontEncoding{OMS}{}{\noaccents@}

\dddot

\ddddot

Triple and quadruple dot accents.

\ams@newcommand{\dddot}[1]{%

{\mathop{\kern\z@#1}\limits^{\vbox to-1.4\ex@{\kern-\tw@\ex@

\hbox{\,\normalfont...}\vss}}}}

\ams@newcommand{\ddddot}[1]{%

{\mathop{\kern\z@#1}\limits^{\vbox to-1.4\ex@{\kern-\tw@\ex@

\hbox{\,\normalfont....}\vss}}}}

We make the commands robust only at the end of the preamble as amsmath
interacts with stix (which should also move to robust commands).

\AtBeginDocument{%

\MakeRobust\dddot

\MakeRobust\ddddot

}

11. MATH ACCENTS 25

The following code deals with support for compound accents. By redefining
\set@mathaccent we ensure that \DeclareMathAccent will define accent com-
mands to run our \mathaccentV function instead of the primitive \mathaccent.

\def\set@mathaccent#1#2#3#4{%

Now that the redefinitions done inside amsmath of the basic accents are all
robust we can drop the \protect here.

\xdef#2{%

% \@nx\protect

\@nx\mathaccentV

{\@xp\@gobble\string#2}\hexnumber@#1#4}%

\MakeRobust#2%

}

\hat

\check

\tilde

\acute

\grave

\dot

\ddot

\breve

\bar

\vec

\mathring

We redefine the standard math accent commands to call \mathaccentV, using
the mathgroup/encoding-number information embedded in their previous defi-
nitions. If the definition of an accent command does not have the expected form,
we leave the accent command alone, but give a warning. For widehat and wide-
tilde, we need to avoid clobbering the definitions done by the amsfonts package.
Arbitrating the contention between amsmath and amsfonts to allow doubling
a widetilde accent looks tricky, so for the time being [mjd,1999/07/19] we just
leave \widehat and \widetilde alone. As a result, if the amsmath package is
loaded on top of a vanilla LATEX documentclass, everything runs through with
no warnings. If a Lucida Math or other math fonts package is loaded in addition
to amsmath, there are greater difficulties, but those are addressed elsewhere.

Adjust the test made at package load to recognise \Umathaccent. Although
currently it is just used to give a modified warning that the accents will not be
redefined.

Note that the engines behave quite differently here, luatex even without
these definitions using the OpenType accent set up by unicode-math stacks
\hat{hat{f}} correctly but xetex acts like classic tex and needs this adjust-
ment. This difference is not addressed here at all.

This test is just at package loading and has no affect on the definitions used
in 8bit TeX.

%\def\@tempa#1{\@xp\@tempb\meaning#1\@nil#1}

The extended definition below tests if the accent is already robust (as newer
LATEX kernels do this by default) and if so picks up the robust definition. How-
ever, as of now it still redefines it to be non-robust.

\def\@tempa#1{%

\@ifundefined{\@xp\@gobble\string#1\space}%

{\@xp\@tempb\meaning#1\@nil#1}%

{\@xp\@xp\@xp\@tempb\@xp\meaning

\csname\@xp\@gobble\string#1\space\endcsname\@nil#1}%

}

\def\@tempb#1>#2#3 #4\@nil#5{%

\@xp\ifx\csname#3\endcsname\mathaccent

\@tempc#4?"7777\@nil#5%

26 THE AMSMATH PACKAGE

\else

\@xp\ifx\csname#3\endcsname\Umathaccent

\@tempd#4\@nil#5%

\else

\PackageWarningNoLine{amsmath}{%

Unable to redefine math accent \string#5}%

\fi\fi}

\def\@tempc#1"#2#3#4#5#6\@nil#7{%

Drop the inner part of the robust accent so that it can be recreated without a
warning.

\@xp\let\csname\@xp\@gobble\string#7\space\endcsname\@undefined

\chardef\@tempd="#3\relax\set@mathaccent\@tempd{#7}{#2}{#4#5}}

\def\@tempd#1\@nil#2{%

\PackageWarningNoLine{amsmath}{%

Unable to redefine \string\Umathaccent\space\string#2}%

}

\@tempa{\hat}

\@tempa{\check}

\@tempa{\tilde}

\@tempa{\acute}

\@tempa{\grave}

\@tempa{\dot}

\@tempa{\ddot}

\@tempa{\breve}

\@tempa{\bar}

\@tempa{\vec}

\@ifundefined{mathring}{%

\DeclareMathAccent{\mathring}{\mathalpha}{operators}{"17}

}{%

\@tempa{\mathring}

}

%%\@tempa\widetilde

%%\@tempa\widehat

Regression testing of amsmath 2.0 showed that in some documents there
occurred fragments of the form

\hat\mathcal{G}

This is not at all correct syntax for the argument of a LATEX command but
it produced the intended result anyway because of the internal syntax of the
\mathaccent primitive. With \mathaccentV, it will yield an error message. We
therefore do a special check for such syntax problems in order to make the error
message more informative. (dmj: ??????)

\newcommand{\acc@check}{}

\newcommand{\acc@error}{}

\def\acc@check{\@ifnextchar\@empty\relax\acc@error}

11. MATH ACCENTS 27

We put most of the tokens in a separate macro so they do not get scanned unless
they are actually needed.

\def\acc@error{%

\@amsmath@err{%

Improper argument for math accent:\MessageBreak

Extra braces must be added to prevent wrong output%

}\@ehc

}

For \mathaccentV part of the processing is dependent on the depth of nesting
of math accent commands. We introduce a dedicated counter for this instead
of using chardef because we want to increment/decrement it during processing,
and incrementing a chardef integer is more work.

\newcount\macc@depth

Provide this function in case it is not already available.

\long\def\@gobblethree#1#2#3{}

The \mathaccentV function first counts the number of nested math accents
by setting the argument in a throw-away box. (This is not as risky as such an
operation would normally be because the argument is generally either a simple
math symbol or a nested math accent call with a simple math symbol at the
bottom of the nesting.)

There are two benefits from counting the nesting levels first before doing
anything else: (1) we can fall back to a simple \mathaccent call if the nesting
depth is 1, and (2) if the nesting depth is greater than 1, we would like to be able
to tell when we have reached the lowest level, because at that point we want to
save the argument for later use and place an accent on top of a phantom copy.

When we have multiple accents, they will be placed on top of the invisi-
ble box, followed by some suitable kerns, then a visible copy of the nucleus.
To see why, let us look at what goes wrong with a double application of the
\mathaccent primitive. The standard definition of \hat is \mathaccent"705E,
so \hat{\hat{F}} expands to

\mathaccent"705E{\mathaccent"705E{F}}

The result of this operation is

\vbox(12.11111+0.0)x7.81946

.\hbox(6.94444+0.0)x0.0, shifted 1.40973

..\OT1/cmr/m/n/10 ^

.\kern-4.30554

.\vbox(9.47221+0.0)x7.81946

..\hbox(6.94444+0.0)x0.0, shifted 2.24309

...\OT1/cmr/m/n/10 ^

..\kern-4.30554

..\hbox(6.83331+0.0)x7.81946

...\OML/cmm/m/it/10 F

TEX starts by constructing a vbox with the hat character on top of the F. Then
it puts another hat character on top of the vbox; but without skew information,
because that is only applied by \mathaccent when the base object is a simple

28 THE AMSMATH PACKAGE

symbol. So the first accent is skewed to the correct position but all later accents
are not. By the way, the actual width of the F in the above example is less
than 7.81946; the box in which it is packed was automatically lengthened by
the width of the F’s italic correction (without actually putting in a kern for it).

To get the second accent shifted farther to the right we artificially increase
the width of the innermost box and add a compensating kern afterward. Fur-
thermore, to get proper placement of a following subscript or superscript, we
take the base symbol out, leaving a phantom in its place, and print it by itself
following the kern. We then need to increase the kern amount to move the base
character backward under the accents again. Here is what the results look like:

\vbox(12.11111+0.0)x9.48618

.\hbox(6.94444+0.0)x0.0, shifted 2.24309

..\OT1/cmr/m/n/10 ^

.\kern-4.30554

.\vbox(9.47221+0.0)x9.48618

..\hbox(6.94444+0.0)x0.0, shifted 2.24309

...\OT1/cmr/m/n/10 ^

..\kern-4.30554

..\hbox(6.83331+0.0)x9.48618

...\hbox(6.83331+0.0)x7.81946

...\kern 1.66672

\kern -9.48618

\OML/cmm/m/it/10 F

Much of this implementation is based on code from the accents package of
Javier Bezos. I added the test to revert to a simple \mathaccent when accents
are not nested, and some other refinements to reduce the number of kerns used
(to conserve box memory) and the number of cycles through \mathchoice (to
make things run a little faster). It was all rather difficult and my first two
attempts had serious bugs but I hope and believe that this version will do
better. [mjd,2000/03/15]

The “V” in \mathaccentV is just an indication that it takes five ar-
guments. It is important that the name includes mathaccent, otherwise
\DeclareMathAccent will balk at redefining one of our accent commands, for
example when an alternative math font package is loaded.

\def\mathaccentV#1#2#3#4#5{%

\ifmmode

\gdef\macc@tmp{\macc@depth\@ne}%

\setbox\z@\hbox{%

\let\mathaccentV\macc@test

\let\use@mathgroup\@gobbletwo \let\select@group\@gobblethree

\frozen@everymath{}$#5$%

}%

\macc@tmp

\ifnum\macc@depth=\@ne

\global\let\macc@nucleus\@empty

\mathaccent"\accentclass@

\else

11. MATH ACCENTS 29

\@xp\macc@nested

\fi

#2#3#4{#5}%

\macc@nucleus

\else

\@xp\nonmatherr@\csname#1\endcsname

\fi

}

\def\macc@test#1#2#3#4{\xdef\macc@tmp{\macc@tmp\advance\macc@depth\@ne}}

\def\macc@group{-1}

\def\macc@nested#1#2#3#4{%

\begingroup

\let\math@bgroup\@empty \let\math@egroup\macc@set@skewchar

\mathsurround\z@ \frozen@everymath{\mathgroup\macc@group\relax}%

\macc@set@skewchar\relax

\let\mathaccentV\macc@nested@a

\macc@nested@a\relax#1#2#3{#4}%

\endgroup

}

\let\macc@palette\mathpalette

\def\macc@nested@a#1#2#3#4#5{%

This test saves some work that would otherwise be always repeated fourfold
thanks to \mathchoice.

\ifnum\macc@group=\mathgroup

\else \macc@set@skewchar\relax \edef\macc@group{\the\mathgroup}%

\fi

\mathchardef\macc@code "\accentclass@ #2#3#4\relax

\macc@palette\macc@a{#5}%

}

The reason that \macc@set@skewchar takes an argument is so that it can
serve as a direct substitute for \math@egroup, in addition to being used sepa-
rately.

Setting a skewchar with this method works for symbols of variable math-
group (class 7, letters and numbers) but not necessarily for special symbols like
\partial or \xi whose mathgroup doesn’t change; fortunately the most com-
monly used ones come from mathgroup one, which is the fall-back mathgroup
for skewchar.

\def\macc@set@skewchar#1{%

\begingroup

\ifnum\mathgroup=\m@ne \let\@tempa\@ne

\else

\ifnum\skewchar\textfont\mathgroup=\m@ne \let\@tempa\@ne

\else \let\@tempa\mathgroup

\fi

\fi

\count@=\skewchar\textfont\@tempa

30 THE AMSMATH PACKAGE

\advance\count@"7100

\edef\@tempa{\endgroup

\mathchardef\noexpand\macc@skewchar=\number\count@\relax}%

\@tempa

#1%

}

Arg1 is math-style, arg2 is accent base object. We assume that math
style doesn’t change within the nested group of accents; this means we can
set \macc@style only once and redefine \macc@palette to use it, in order to
run \mathchoice only once instead of multiplying the calls exponentially as the
nesting level increases.

\def\macc@a#1#2{%

\begingroup

\let\macc@style#1\relax

\def\macc@palette##1{##1\macc@style}%

\advance\macc@depth\m@ne

\ifnum\macc@depth=\z@

\gdef\macc@nucleus{#2}%

Extra \@empty tokens are to prevent low-level TEX errors from the potential
syntactic error that \acc@check checks for.

\setbox\z@\hbox{$#1#2\@empty{}\macc@skewchar$}%

\setbox\tw@\hbox{$#1#2\@empty\macc@skewchar$}%

\dimen@\tw@\wd\tw@ \advance\dimen@-\tw@\wd\z@

\xdef\macc@kerna{\the\dimen@\relax}%

\setbox4\hbox{$#1#2\acc@check\@empty$}%

\global\setbox\@ne\hbox to\wd4{}%

\ht\@ne\ht4 \dp\@ne\dp4

\xdef\macc@kernb{\the\wd4\relax}%

\mathaccent\macc@code{\box\@ne\kern\macc@kerna}%

\else

\mathaccent\macc@code{\let\macc@adjust\@empty #1#2\@empty}%

\macc@adjust

\fi

\endgroup

}

\def\macc@adjust{%

\dimen@\macc@kerna\advance\dimen@\macc@kernb

\kern-\dimen@

}

The commands \Hat, \Tilde, . . . , are supported as synonyms of \hat,
\tilde, . . . , for backward compatibility.

\def\Hat{\hat}

\def\Check{\check}

\def\Tilde{\tilde}

\def\Acute{\acute}

\def\Grave{\grave}

\def\Dot{\dot}

12. MODS, CONTINUED FRACTIONS, ETC. 31

\def\Ddot{\ddot}

\def\Breve{\breve}

\def\Bar{\bar}

\def\Vec{\vec}

This error message about math mode is used several times so we make an
abbreviation for it.

\def\nonmatherr@#1{\@amsmath@err{\protect

#1 allowed only in math mode}\@ehd}

12 Mods, continued fractions, etc.
\bmod

\pmod

\pod

\mod

The commands \bmod, \pmod, \pod, \mod aren’t currently robust. [mjd,
1994/09/05] Now they are

\DeclareRobustCommand{\bmod}{\nonscript\mskip-\medmuskip\mkern5mu\mathbin

{\operator@font mod}\penalty900

\mkern5mu\nonscript\mskip-\medmuskip}

\DeclareRobustCommand{\pod}[1]{\allowbreak

\if@display\mkern18mu\else\mkern8mu\fi(#1)}

\DeclareRobustCommand{\pmod}[1]{\pod{{\operator@font mod}\mkern6mu#1}}

\DeclareRobustCommand{\mod}[1]{\allowbreak\if@display\mkern18mu

\else\mkern12mu\fi{\operator@font mod}\,\,#1}

\cfrac Continued fractions. The optional arg l or r controls horizontal placement of
the numerators. The \kern-\nulldelimiterspace is needed in the definition
if we want the right-hand sides of the fraction rules to line up. The \strut

keeps the numerator of a subsidiary cfrac from coming too close to the fraction
rule above it.

\DeclareRobustCommand{\cfrac}[3][c]{{\displaystyle\frac{%

\strut\ifx r#1\hfill\fi#2\ifx l#1\hfill\fi}{#3}}%

\kern-\nulldelimiterspace}

\overset

\underset

\overset and \underset put symbols above, respectively below, a symbol that
is not a \mathop and therefore does not naturally accept limits. \binrel@@

uses information collected by \binrel@ to make the resulting construction be
of type mathrel or mathbin if the base symbol is either of those types.

\DeclareRobustCommand{\overset}[2]{\binrel@{#2}%

\binrel@@{\mathop{\kern\z@#2}\limits^{#1}}}

\DeclareRobustCommand{\underset}[2]{\binrel@{#2}%

\binrel@@{\mathop{\kern\z@#2}\limits_{#1}}}

\overunderset This is the combination of the previous two commands which is something that
is sometimes needed.

\DeclareRobustCommand{\overunderset}[3]{\binrel@{#3}%

\binrel@@{\mathop{\kern\z@#3}\limits^{#1}_{#2}}}

\sideset \sideset allows placing ‘adscript’ symbols at the four corners of a \mathop, in
addition to limits. Left-side adscripts go into arg #1, in the form _{...}^{...},
and right-side adscripts go into arg #2.

32 THE AMSMATH PACKAGE

As currently written [mjd, 1995/01/21] this is pretty haphazard. In order to
really make it work properly in full generality we’d have to read and measure
the top and bottom limits and use mathchoice to always get the right mathstyle
for each piece, etc., etc.

\DeclareRobustCommand{\sideset}[3]{%

\@mathmeasure\z@\displaystyle{#3}%

Use a global box assignment here since the depth override is implicitly global.
Then move the constructed box to a local box register (2) to ensure it won’t get
destroyed during the next two mathmeasure statements. This precaution may
be more extreme than necessary in practice.

\global\setbox\@ne\vbox to\ht\z@{}\dp\@ne\dp\z@

\setbox\tw@\box\@ne

\@mathmeasure4\displaystyle{\copy\tw@#1}%

\@mathmeasure6\displaystyle{#3\nolimits#2}%

\dimen@-\wd6 \advance\dimen@\wd4 \advance\dimen@\wd\z@

\hbox to\dimen@{}\mathop{\kern-\dimen@\box4\box6}%

}

\smash We add to the \smash command an optional argument denoting the part of the
formula to be smashed.

\ifx\leavevmode@ifvmode\@undefined

\DeclareRobustCommand{\smash}[1][tb]{%

\def\mb@t{\ht}\def\mb@b{\dp}\def\mb@tb{\ht\z@\z@\dp}%

\edef\finsm@sh{\csname mb@#1\endcsname\z@\z@\box\z@}%

\ifmmode \@xp\mathpalette\@xp\mathsm@sh

\else \@xp\makesm@sh

\fi

}

\else

\DeclareRobustCommand{\smash}[1][tb]{%

\def\mb@t{\ht}\def\mb@b{\dp}\def\mb@tb{\ht\z@\z@\dp}%

\edef\finsm@sh{\csname mb@#1\endcsname\z@\z@ \leavevmode@ifvmode\box\z@}%

\ifmmode \@xp\mathpalette\@xp\mathsm@sh

\else \@xp\makesm@sh

\fi

}

\fi

13 Extensible arrows
The minus sign used in constructing these arrow fills is smashed so that su-
perscripts above the arrows won’t be too high. This primarily affects the
\xleftarrow and \xrightarrow arrows.

\@ifundefined{Umathcode}

{%

\mathchardef\std@minus\mathcode‘\-\relax

\mathchardef\std@equal\mathcode‘\=\relax

}

13. EXTENSIBLE ARROWS 33

{%

\Umathcharnumdef\std@minus\Umathcodenum‘\-\relax

\Umathcharnumdef\std@equal\Umathcodenum‘\=\relax

}

In case some alternative math fonts are loaded later:

\@ifundefined{Umathcode}

{%

\AtBeginDocument{%

\mathchardef\std@minus\mathcode‘\-\relax

\mathchardef\std@equal\mathcode‘\=\relax

}%

}

{%

\AtBeginDocument{%

\Umathcharnumdef\std@minus\Umathcodenum‘\-\relax

\Umathcharnumdef\std@equal\Umathcodenum‘\=\relax

}%

}

\relbar

\Relbar \ams@DeclareRobustCommand\relbar{\mathrel{\mathpalette\mathsm@sh\std@minus}}

\ams@DeclareRobustCommand\Relbar{\mathrel\std@equal}

\def\arrowfill@#1#2#3#4{%

$\m@th\thickmuskip0mu\medmuskip\thickmuskip\thinmuskip\thickmuskip

\relax#4#1\mkern-7mu%

\cleaders\hbox{$#4\mkern-2mu#2\mkern-2mu$}\hfill

\mkern-7mu#3$%

}

\def\leftarrowfill@{\arrowfill@\leftarrow\relbar\relbar}

\def\rightarrowfill@{\arrowfill@\relbar\relbar\rightarrow}

\def\leftrightarrowfill@{\arrowfill@\leftarrow\relbar\rightarrow}

\def\Leftarrowfill@{\arrowfill@\Leftarrow\Relbar\Relbar}

\def\Rightarrowfill@{\arrowfill@\Relbar\Relbar\Rightarrow}

\def\Leftrightarrowfill@{\arrowfill@\Leftarrow\Relbar\Rightarrow}

\def\overarrow@#1#2#3{\vbox{\ialign{##\crcr#1#2\crcr

\noalign{\nointerlineskip}$\m@th\hfil#2#3\hfil$\crcr}}}

\ams@renewcommand{\overrightarrow}{%

\mathpalette{\overarrow@\rightarrowfill@}}

\ams@renewcommand{\overleftarrow}{%

\mathpalette{\overarrow@\leftarrowfill@}}

\ams@newcommand{\overleftrightarrow}{%

\mathpalette{\overarrow@\leftrightarrowfill@}}

Again we delay making commands robut for stix.

\AtBeginDocument{%

\expandafter\let\csname overleftarrow \endcsname\@undefined

\expandafter\let\csname overrightarrow \endcsname\@undefined

\MakeRobust\overrightarrow

34 THE AMSMATH PACKAGE

\MakeRobust\overleftarrow

\MakeRobust\overleftrightarrow

}

\def\underarrow@#1#2#3{%

\vtop{\ialign{##\crcr$\m@th\hfil#2#3\hfil$\crcr

\noalign{\nointerlineskip\kern1.3\ex@}#1#2\crcr}}}

\ams@newcommand{\underrightarrow}{%

\mathpalette{\underarrow@\rightarrowfill@}}

\ams@newcommand{\underleftarrow}{%

\mathpalette{\underarrow@\leftarrowfill@}}

\ams@newcommand{\underleftrightarrow}{%

\mathpalette{\underarrow@\leftrightarrowfill@}}

\AtBeginDocument{%

\MakeRobust\underrightarrow

\MakeRobust\underleftarrow

\MakeRobust\underleftrightarrow

}

%\DeclareRobustCommand{\xrightarrow}[2][]{\ext@arrow 0359\rightarrowfill@{#1}{#2}}

\def\ext@arrow#1#2#3#4#5#6#7{%

\mathrel{\mathop{%

Measure the superscript and subscript.

\setbox\z@\hbox{#5\displaystyle}%

\setbox\tw@\vbox{\m@th

\hbox{$\scriptstyle\mkern#3mu{#6}\mkern#4mu$}%

\hbox{$\scriptstyle\mkern#3mu{#7}\mkern#4mu$}%

\copy\z@

}%

\hbox to\wd\tw@{\unhbox\z@}}%

We don’t want to place an empty subscript since that will produce too much
blank space below the arrow.

\limits

\@ifnotempty{#7}{^{\if0#1\else\mkern#1mu\fi

#7\if0#2\else\mkern#2mu\fi}}%

\@ifnotempty{#6}{_{\if0#1\else\mkern#1mu\fi

#6\if0#2\else\mkern#2mu\fi}}}%

}

Some extensible arrows to serve as mathrels and taking sub/superscripts.
These commands are robust because they take an optional argument.

\DeclareRobustCommand{\xrightarrow}[2][]{\ext@arrow 0359\rightarrowfill@{#1}{#2}}

\DeclareRobustCommand{\xleftarrow}[2][]{\ext@arrow 3095\leftarrowfill@{#1}{#2}}

Both \dots\to and \gets\gets produce binary dots by default, so the
extended variants should do that too:

\edef\xrightarrow{\DOTSB\unexpanded\expandafter{\xrightarrow}}

\edef\xleftarrow{\DOTSB\unexpanded\expandafter{\xleftarrow}}

14. ARRAY-RELATED ENVIRONMENTS 35

14 Array-related environments

14.1 Remarks
Because these environments can be nested within the equation structures that
allow \tag, there is some cross-influence in the internal workings of the \\

command.

14.2 The subarray environment and \substack command
The \substack command can be used to set subscripts and superscripts that
consist of several lines. Usage:

X_{\substack{a=1\\b=2}}

subarray (env.) The subarray environment makes a small-size array suitable for use in a sub-
script or superscript. At the moment the supported arguments are not the full
possibilities of array but only c or l for centered or left-aligned. And only one
column.

\ifx\directlua\@undefined

\newenvironment{subarray}[1]{%

Note: The predecessors of subarray (Sb and Sp, inherited from AMS-TEX)
used \vbox instead of \vcenter. But when a multiline subscript is placed in
\limits position \vcenter is no worse than \vbox, and when it is placed in
the \nolimits position (e.g., for an integral), \vcenter provides clearly better
positioning than \vbox.

\vcenter\bgroup

Use \Let@ to set the proper meaning of the \\ and * commands. And re-
store the meaning of \math@cr@@@ to \cr (see above) in case subarray is used
inside one of the more complicated alignment macros where the meaning of
\math@cr@@@ is different. Similarly, call \default@tag to ensure that a line
break here doesn’t get an equation number!

\Let@ \restore@math@cr \default@tag

Set the line spacing to be the same as \atop (when \atop occurs in \textstyle

or smaller), cf The TEXbook, Appendix G.

\baselineskip\fontdimen10 \scriptfont\tw@

\advance\baselineskip\fontdimen12 \scriptfont\tw@

\lineskip\thr@@\fontdimen8 \scriptfont\thr@@

\lineskiplimit\lineskip

Start the \vbox \halign structure that encloses the contents. Notice that we
never get \scriptscriptstyle. That would require a \mathchoice (ugh).

\ialign\bgroup\ifx c#1\hfil\fi

$\m@th\scriptstyle##$\hfil\crcr

}{%

\crcr\egroup\egroup

}

\else

\newenvironment{subarray}[1]{%

36 THE AMSMATH PACKAGE

\vcenter\bgroup

\Let@ \restore@math@cr \default@tag

\baselineskip \Umathstacknumup \scriptstyle

\advance\baselineskip \Umathstackdenomdown \scriptstyle

\lineskip \Umathstackvgap \scriptstyle

\lineskiplimit \lineskip

\ialign\bgroup\ifx c#1\hfil\fi

\Ustartmath

\m@th\scriptstyle##

\Ustopmath

\hfil\crcr

}{%

\crcr\egroup\egroup

}

\fi

\substack The \substack command is just an abbreviation for the most common use of
subarray.

\DeclareRobustCommand{\substack}[1]{\subarray{c}#1\endsubarray}

14.3 Matrices
smallmatrix (env.) smallmatrix is again an alignment, this time in a centered box. The opening

incantations are basically the same as those in \multilimits@, followed by the
alignment itself. A remark: the baselineskip (9\ex@) used in AMS-TEX is too
large for use in text with the usual baselineskip of 12 or 13 points; we change it
here to 6\ex@ and also adjust the \lineskip and \lineskiplimit slightly to
compensate. (MJD)

\newenvironment{smallmatrix}{\null\,\vcenter\bgroup

\Let@\restore@math@cr\default@tag

\baselineskip6\ex@ \lineskip1.5\ex@ \lineskiplimit\lineskip

\ialign\bgroup\hfil$\m@th\scriptstyle##$\hfil&&\thickspace\hfil

$\m@th\scriptstyle##$\hfil\crcr

}{%

\crcr\egroup\egroup\,%

}

matrix (env.) The matrix environment is just an array that provides up to ten centered
columns, so that users don’t have to give the col-spec argument explicitly—
unless they want some of the columns noncentered, that is. The maximum num-
ber of columns is actually not fixed at ten but given by the counter MatrixCols,
and can therefore be increased by changing that counter.

The extra space of \arraycolsep that array adds on each side is a waste so
we remove it here (perhaps we should instead remove it from array in general,
but that’s a harder task).

TODO: Think about re-implementing \matrix to get rid of the \c@MatrixCols
limit and have hard-wired preamble that doesn’t have to be rebuilt each time.

14. ARRAY-RELATED ENVIRONMENTS 37

We must use \renewenvironment for matrix and pmatrix because LATEX
doesn’t kill the definitions found in plain.tex, even though it probably should
because of their foreign syntax.

\renewenvironment{matrix}{%

\matrix@check\matrix\env@matrix

}{%

\endarray \hskip -\arraycolsep

}

\env@matrix

\def\env@matrix{\hskip -\arraycolsep

\let\@ifnextchar\new@ifnextchar

\array{*\c@MaxMatrixCols c}}

\c@MaxMatrixCols

\newcount\c@MaxMatrixCols \c@MaxMatrixCols=10

\matrix@check For various reasons, authors sometimes use the Plain TEX form of \matrix or
\pmatrix in LATEX documents. If they later add an invocation of the amsmath

package to their document, the Plain TEX syntax would lead to rather unin-
telligible error messages. The \matrix@check function does some checking to
forestall that problem.

\def\matrix@check#1{%

\@xp\ifx\csname\@currenvir\endcsname#1%

\else\matrix@error#1%

This error recovery is not that good but is better than the infinite loop that can
result from calling \array without a matching \endarray. (The array setup
leaves \par empty.)

\@xp\@gobble

\fi

}

\matrix@error

\def\matrix@error#1{%

\@amsmath@err{%

Old form ‘\string#1’ should be \string\begin{\@xp\@gobble\string#1}%

}{%

‘\string#1{...}’ is old Plain-TeX syntax whose use is

ill-advised in LaTeX.%

}%

}

\renewenvironment{pmatrix}{%

\left(%

\matrix@check\pmatrix\env@matrix

}{

\endmatrix\right)%

}

38 THE AMSMATH PACKAGE

\newenvironment{bmatrix}{\left[\env@matrix}{\endmatrix\right]}

\newenvironment{Bmatrix}{%

\left\lbrace\env@matrix

}{%

\endmatrix\right\rbrace

}

\newenvironment{vmatrix}{\left\lvert\env@matrix}{\endmatrix\right\rvert}

\newenvironment{Vmatrix}{\left\lVert\env@matrix}{\endmatrix\right\rVert}

\let\hdots\@ldots

\newcommand{\hdotsfor}[1]{%

\ifx[#1\@xp\shdots@for\else\hdots@for\@ne{#1}\fi}

\newmuskip\dotsspace@

\def\shdots@for#1]{\hdots@for{#1}}

\def\hdots@for#1#2{\multicolumn{#2}c%

{\m@th\dotsspace@1.5mu\mkern-#1\dotsspace@

\xleaders\hbox{$\m@th\mkern#1\dotsspace@.\mkern#1\dotsspace@$}%

\hfill

\mkern-#1\dotsspace@}%

}

cases (env.) The easiest way to produce the cases environment is to base it on the array

environment. We must use \renewenvironment to override the definition of
\cases that LATEX (unwisely) leaves in place from plain.tex.

\renewenvironment{cases}{%

\matrix@check\cases\env@cases

}{%

\endarray\right.%

}

\def\env@cases{%

\let\@ifnextchar\new@ifnextchar

\left\lbrace

\def\arraystretch{1.2}%

\array{@{}l@{\quad}l@{}}%

}

15 Equation sub-numbering
\newcounter{parentequation}% Counter for ‘‘parent equation’’.

We can’t assume \ignorespacesafterend is defined since it was not there
in the earliest releases of LATEX 2e. And we need to include the \global for the
same reason.
\@ifundefined{ignorespacesafterend}{%

\def\ignorespacesafterend{\global\@ignoretrue}%

}{}

subequations (env.)

\newenvironment{subequations}{%

16. EQUATION NUMBERING 39

Before sending down the ‘equation’ counter to the subordinate level, add 1 using
standard \refstepcounter.

\refstepcounter{equation}%

Define \theparentequation equivalent to current \theequation. \edef is nec-
essary to expand the current value of the equation counter. This might in rare
cases cause something to blow up, in which case the user needs to add \protect.

\protected@edef\theparentequation{\theequation}%

\setcounter{parentequation}{\value{equation}}%

And set the equation counter to 0, so that the normal incrementing processes
in the various equation environments will produce the desired results.

\setcounter{equation}{0}%

\def\theequation{\theparentequation\alph{equation}}%

\ignorespaces

}{%

\setcounter{equation}{\value{parentequation}}%

\ignorespacesafterend

}

16 Equation numbering
In the multiline equation environments provided here, the task of equation num-
bering is linked to the task of line breaking in the sense that it is the \\ command
that marks where an equation number for the current line will be processed and
added to the page.

\numberwithin Provide a convenient way to specify that equations should be numbered within
sections. The LATEX kernel contains a similar command \counterwithin (with
a slightly extended syntax) that can be used as a drop-in replacement for
\numberwithin.

%\DeclareRobustCommand{\numberwithin}[3][\arabic]{%

% \@ifundefined{c@#2}{\@nocounterr{#2}}{%

% \@ifundefined{c@#3}{\@nocnterr{#3}}{%

% \@addtoreset{#2}{#3}%

% \@xp\xdef\csname the#2\endcsname{%

% \@xp\@nx\csname the#3\endcsname .\@nx#1{#2}}}}%

%}

We are now using the LATEX kernel command and just make an alias for
legacy documents. This also repairs a bug in the error message that the old
\numberwithin definition showed.

\DeclareCommandCopy\numberwithin\counterwithin

\eqref To make references to equation numbers easier, we provide \eqref. We almost
don’t need \textup, except that \tagform@ doesn’t supply the italic correction.

\DeclareRobustCommand{\eqref}[1]{\textup{\tagform@{\ref{#1}}}}

40 THE AMSMATH PACKAGE

16.1 Preliminary macros
The following macros implement the LATEX syntax for the \\ command, i.e. the
possibility to add an asterisk to inhibit a page break, or an optional argument
to denote additional vertical space. They are modelled more or less after the
corresponding macros for LATEX’s eqnarray and array environments.

[We can perhaps use the eqnarray mechanism if we change it so that it also
uses \openup.]

\dspbrk@lvl We begin by defining the \dspbrk@lvl counter. This counter records the desir-
ability of a break after the current row, as a number between 0 and 4. Its default
value is −1 meaning that no explicit \displaybreak command was given, and
the default \interdisplaylinepenalty is to be used.

\newcount\dspbrk@lvl

\dspbrk@lvl=-1

\interdisplaylinepenalty We set the \interdisplaylinepenalty to 10000.

\interdisplaylinepenalty\@M

\allowdisplaybreaks The \allowdisplaybreaks command. Since this is intended for use out-
side displayed formulas (typically in the preamble), it does not need to use
\new@ifnextchar.

\DeclareRobustCommand{\allowdisplaybreaks}[1][4]{%

\interdisplaylinepenalty\getdsp@pen{#1}\relax

}

\getdsp@pen Modelled after LATEX’s \@getpen. We use higher numbers than would normally
be provided by \@lowpenalty, \@medpenalty, and \@highpenalty, since dis-
play breaks are almost always less desirable.

\def\getdsp@pen#1{%

\ifcase #1\@M \or 9999 \or 6999 \or 2999 \or \z@\fi

}

\displaybreak

\dspbrk@

\dspbrk@context

\nogood@displaybreak

For breaks in a certain row of a alignment.

\DeclareRobustCommand{\displaybreak}{\new@ifnextchar[\dspbrk@{\dspbrk@[4]}}

\chardef\dspbrk@context=\sixt@@n

\def\dspbrk@[#1]{%

\ifmeasuring@

\else

\ifcase\dspbrk@context % case 0 --- OK

\global\dspbrk@lvl #1\relax

\or % case 1 --- inside a box

\nogood@displaybreak

\else % other cases --- outside of a display

\@amsmath@err{\Invalid@@\displaybreak}\@eha

\fi

\fi

}

16. EQUATION NUMBERING 41

This is the value of \displaybreak when it occurs inside some structure
where it will not work.

\def\nogood@displaybreak{%

\@amsmath@err{\protect

\displaybreak\space cannot be applied here}%

{One of the enclosing environments creates an

unbreakable box\MessageBreak

(e.g., split, aligned, gathered, ...).}%

}

\math@cr The macro \math@cr ends a row inside one of the equation environments, i.e.,
this is the internal name of the \\ commands in these environments. As usual
for this kind of macro inside of alignments we insert a special brace into TEX’s
input stream. The initial \relax is needed to trigger entry into the u template
of the current column if the author ended the current row with an empty column
(i.e., the mathcr was immediately preceded by an ampersand).

\protected\def\math@cr{\relax\iffalse{\fi\ifnum0=‘}\fi

The first step is now to check whether an asterisk follows. \@eqpen is used to
hold the penalty value to be put on the vertical list. Then we call up \math@cr@

which performs the next step. If an asterisk is read page breaking is inhibited.

\@ifstar{\global\@eqpen\@M\math@cr@}%

Otherwise we have to check the \dspbrk@lvl value.

{\global\@eqpen

\ifnum\dspbrk@lvl <\z@ \interdisplaylinepenalty

\else -\@getpen\dspbrk@lvl \fi

\math@cr@}}

\math@cr@ The purpose of \math@cr@ is to check whether an optional argument follows. If
not it provides \z@ as default value.

\def\math@cr@{\new@ifnextchar[\math@cr@@{\math@cr@@[\z@]}}

\math@cr@@ \math@cr@@ closes the special brace opened in \math@cr, and calls \math@cr@@@
which is supposed the ‘real’ row ending command. The meaning of this macro
depends on the environment in which it is used.

\def\math@cr@@[#1]{\ifnum0=‘{\fi \iffalse}\fi\math@cr@@@

Finally we put the additional space onto the vertical list.

\noalign{\vskip#1\relax}}

\Let@ \Let@ is called by all environments where \\ ends a row of an alignment.

\def\Let@{\let\\\math@cr}

\restore@math@cr We mentioned already that the exact meaning of \math@cr@@@ depends
on the current environment. Since it is often a simple \cr we provide
\restore@math@cr to reset it.

\def\restore@math@cr{\def\math@cr@@@{\cr}}

42 THE AMSMATH PACKAGE

This is also the default case.

\restore@math@cr

\intertext

\intertext@

The \intertext command is used for inserting text between the rows of an
alignment. It might better be done as an environment, but the \begingroup

from \begin would cause the \noalign to fail.

\newcommand{\intertext}{\@amsmath@err{\Invalid@@\intertext}\@eha}

\intertext@ is called by all environments that allow the use of the \intertext
command.

\def\intertext@{%

\def\intertext##1{%

If current mode is not vmode, the most likely reason is that the writer forgot
the \\ that is supposed to precede \intertext. All right, then, let’s try adding
it our ownself. But, to be slightly careful: \\ does a futurelet, and it’s slightly
dangerous to allow a letted token to barge around loose in our internal code when
it has been let to a conditional token like \fi. So let’s interpose something in
front of the \fi for the futurelet to take instead. (And careful again: it has to
be something evanescent, not (e.g.) \relax which would cause the next halign
cell to fire up and keep \noalign from working.)

\ifvmode\else\\\@empty\fi

\noalign{%

\penalty\postdisplaypenalty\vskip\belowdisplayskip

\vbox{\normalbaselines

We need to do something extra if the outside environment is a list environment. I
don’t see offhand an elegant way to test “are we inside any list environment” that
is both easy and reliable (for example, checking for zero \@totalleftmargin

wouldn’t catch the case where \@totalleftmargin is zero but \linewidth is
less than \columnwidth), so it seems to me checking \linewidth is the best
practical solution.

\ifdim\linewidth=\columnwidth

\else \parshape\@ne \@totalleftmargin \linewidth

\fi

\noindent\ignorespaces##1\par}%

\penalty\predisplaypenalty\vskip\abovedisplayskip%

}%

}}

16.2 Implementing tags and labels
In this section we describe some of the macros needed to make the \tag com-
mand work in various places. We start by defining a help text to be used when
a \tag command is used somewhere it should not appear.

\tag@help This is the default error help text provided when \tag generates an error mes-
sage. Note that \newhelp generates a control sequence name from the string
given as its argument so that a leading backslash is provided automatically.

16. EQUATION NUMBERING 43

\newhelp\tag@help

{tag cannot be used at this point.\space

If you don’t understand why^^Jyou should consult

the documentation.^^JBut don’t worry: just continue, and I’ll

forget what happened.}

\gobble@tag This macro is to be used when \tag should silently skip its argument. It is
made to handle the *-form of \tag as well.

\def\gobble@tag{\@ifstar\@gobble\@gobble}

\invalid@tag \invalid@tag is a macro that should be used whenever \tag appears in an
illegal place. It sets up \tag@help (as defined above) as help message, prints
its argument as error message, and skips \tag’s argument.

\def\invalid@tag#1{\@amsmath@err{#1}{\the\tag@help}\gobble@tag}

\dft@tag

\default@tag

\dft@tag provides a convenient way to disallow the use of \tag at certain points.
One simply has to write

\let\tag\dft@tag

and the \tag command will produce an error message, with a suitable error
help text, and discard its argument.

\def\dft@tag{\invalid@tag{\string\tag\space not allowed here}}

Since this is used several times we provide an abbreviation for it.

\def\default@tag{\let\tag\dft@tag}

Since this is also the default, i.e. the \tag command should not be used except
in special places, we issue a \default@tag command.

\default@tag

Now that we have taken care of the case that \tag is not allowed we will
provide some macros to process tags appropriately. As the user documentation
states, a \tag command (without the asterisk typesets its argument according
to the document styles’ conventions, whereas a \tag* command typesets its
argument exactly as given. We define therefore the following interface:

\maketag@@

\maketag@@@

\tagform@

\tag is supposed to call \maketag@@ which checks whether an asterisk follows. If
this is the case it calls up \maketag@@@ which sets its argument ‘as is’. Otherwise
\tagform@ is called to do the job. (This macro is to be defined appropriately
by the document style.)

\def\maketag@@{\@ifstar\maketag@@@\tagform@}

We define \maketag@@@ to use the normal font of the document text (since this
is the usual practice for numbering of document elements) and to put a box
around the tag. Furthermore we use \m@th for exceptional cases where the tag
involves a superscript or some such math. (Probably from an explicit use of
\tag* rather than from the automatic numbering.)

\def\maketag@@@#1{\hbox{\m@th\normalfont#1}}

44 THE AMSMATH PACKAGE

We use the following default definition for \tagform@ that puts only parentheses
around the tag.

\def\tagform@#1{\maketag@@@{(\ignorespaces#1\unskip\@@italiccorr)}}

We need to insinuate \tagform@ into \@eqnnum in case eqnarray is used
(probably in a document that was originally written without use of the amsmath
package).

\iftagsleft@

\def\@eqnnum{\hbox to1sp{}\rlap{\normalfont\normalcolor

\hskip -\displaywidth\tagform@\theequation}}

\else

\def\@eqnnum{{\normalfont\normalcolor \tagform@\theequation}}

\fi

\thetag Sometimes one needs to set a literal tag according to the rules of the docu-
ment style. To achieve this we provide the \thetag command. It typesets its
argument by calling \tagform@ on it.

\newcommand{\thetag}{\leavevmode\tagform@}

\df@tag

\make@df@tag

\make@df@tag@@

\make@df@tag@@@

Sometimes it is necessary for a \tag command to store a tag in a safe place
and to process it later, e.g., for a tag in a row of an alignment where the tag
can only be typeset when the \\ at the end of the row was seen. Such a tag is
stored in the macro \df@tag (for ‘deferred tag’). For this purpose we provide
the \make@df@tag macro. It is built very similar to the \maketag@@ macro
above.

\let\df@tag\@empty

\def\make@df@tag{%

We set \@currentcounter here so that it applies to both branches.

\def\@currentcounter{equation}%

\@ifstar\make@df@tag@@\make@df@tag@@@}

\make@df@tag sets \@currentlabel and defines \df@tag appropriately.
To simplify the task of tracking \tag and \label commands inside math dis-

play environments, we defer \label commands until the tag is typeset, similar
to the way that \tags themselves are deferred. This allows arbitrary placement
of \label and \tag commands and also means we only increment the \equation
counter when we really need to, thus avoiding the \setb@ck nonsense that used
to be required.

\def\make@df@tag@@#1{%

\gdef\df@tag{\maketag@@@{#1}\def\@currentlabel{#1}}}

Autogenerated number:

\def\make@df@tag@@@#1{\gdef\df@tag{\tagform@{#1}%

\toks@\@xp{\p@equation{#1}}\edef\@currentlabel{\the\toks@}}}

\ltx@label

\label@in@display

\df@label

Next, we store the default definition of \label in \ltx@label and then define a
new version of \label for use in math display environments. \label@in@display

16. EQUATION NUMBERING 45

merely issues a warning message if there is already a pending label (which will
be discarded) and then stores the label in \df@label. Delay saving the label in
case other packages adjust the definition.

\AddToHook{begindocument/end}{\let\ltx@label\label}

In the output routine the label should do nothing.

\AddToHook{build/page/reset}{\let \ltx@label \@gobble@with@sphack@om}

\def\label@in@display{%

\ifx\df@label\@empty\else

\@amsmath@err{Multiple \string\label’s:

label ’\df@label’ will be lost}\@eha

\fi

\gdef\df@label

}

In case there is an enumerate inside a minipage inside an equation, we need to
reset \label to its normal value:

\toks@\@xp{\@arrayparboxrestore \let\label\ltx@label}%

\edef\@arrayparboxrestore{\the\toks@}

\let\df@label\@empty

\make@display@tag Now we define a macro to process \tag and \label commands in various display
environments. If the @eqnsw switch is set, then we should supply an equation
number; otherwise, if the @tag switch is set, we should use the tag stored in
\df@tag. Finally, we process any pending \labels.

TODO: Arguably, \make@display@tag should issue a warning message if
there is a \label but neither a tag nor an equation number. Also, it would
probably be worthwhile to explore whether \iftag@ could be done away with
and replaced by checks to see if \df@tag is empty or not.

\def\make@display@tag{%

\if@eqnsw \incr@eqnum \print@eqnum

\else \iftag@ \df@tag \global\let\df@tag\@empty \fi

\fi

Need to check the \ifmeasuring@ flag otherwise the \write node from \label

might be discarded in a temp box and clearing \df@label will keep it from
being reiterated on the real typesetting pass.

\ifmeasuring@

\else

\ifx\df@label\@empty

\else

\@xp\ltx@label\@xp{\df@label}%

\global\let\df@label\@empty

\fi

\fi

}

Now we define the special versions of \tag used within the align environ-
ments.

46 THE AMSMATH PACKAGE

\tag@in@align The \tag command may only appear once in a row of an alignment. Therefore
we first check the switch tag@ that is set to false at the begin of every row. If
this switch is true a \tag was already given in this row and we define \next@

to expand to a call to \invalid@tag.

\def\tag@in@align{%

\relax

\iftag@

\DN@{\invalid@tag{Multiple \string\tag}}%

\else

Otherwise we set the tag@ switch. But there is more to be done: we must also
prevent the automatic generation of a tag. Therefore we also reset the @eqnsw.

\global\tag@true

Changed to \nonumber, since that seems to be all that’s required.—dmj,
1994/12/21

\nonumber

Within a row of an align environment the \tag command must not typeset the
tag immediately since its position can be determined only later. Therefore we
use the \make@df@tag macro defined earlier. Finally we call \next@ to process
the argument that follows.

\let\next@\make@df@tag

\fi

\next@

}

\raisetag Usage: \raisetag ⟨dimen⟩
This will modify the vertical placement of the tag of the current equation

by ⟨dimen⟩. Note that according to the current uses of \raise@tag in e.g.,
\place@tag@gather, no adjustment occurs if the tag falls in its normal position;
i.e., \raisetag has no effect unless the tag has already been shifted off-line.

\newcommand{\raisetag}[1]{\skip@#1\relax

\xdef\raise@tag{\vskip\iftagsleft@\else-\fi\the\skip@\relax}%

}

\raise@tag will be reemptied at the beginning of each equation, which might
occur at a \begin{xxx} or \\.

\let\raise@tag\@empty

\notag For consistency we provide \notag, equivalent to \nonumber. The alternative
would have been to rename \tag as \number to go along with \nonumber, but
of course \number is a TEX primitive that should not be redefined.

\newcommand{\notag}{\nonumber}

\nonumber Need to add some additional code to \nonumber to deal with some complications
related to nested environments.

\renewcommand{\nonumber}{%

\if@eqnsw

17. MULTILINE EQUATION ENVIRONMENTS 47

\ifx\incr@eqnum\@empty \addtocounter{equation}\m@ne \fi

\fi

\let\print@eqnum\@empty \let\incr@eqnum\@empty

\global\@eqnswfalse

}

\def\print@eqnum{\tagform@\theequation}

\def\incr@eqnum{\refstepcounter{equation}\let\incr@eqnum\@empty}

17 Multiline equation environments

17.1 Remarks
In late 1994 David M. Jones did a thorough overhaul of these environments
so that the number placement and a few other aspects are substantially im-
proved over the original versions that were ported essentially unchanged from
amstex.tex in 1989. Most of the commentary in this section is DMJ’s, and
comments of any significance that I added are marked by my initials and date
[mjd, 1995/01/11].

17.2 Preliminaries
\dollardollar@begin

\dollardollar@end

To support tagging LATEX needs some control at the end of a display math
formula. It therefore implements two commands that hide the $$. The tagging
code can then redefine those to gain control at the right moment without the
need for further adjustment by a package author. Here we provide them, just
in case this version of the package is used with an older format.

\providecommand\dollardollar@begin{$$}

\providecommand\dollardollar@end{$$}

\ifinalign@

\ifingather@

We define two switches that are set to true in certain alignments: inalign@ and
ingather@ inside of the align and gather environments. These switches are
needed to control certain actions that depend on the surrounding conditions,
more specifically: on the setting already done by the surrounding environments.

\newif\ifinalign@

\newif\ifingather@

Historical Note: Removed the \ifinany@ test [mjd,1999/06/28] since it was
mainly used for the purpose now handled by \spread@equation.

\@arrayparboxrestore Here we must reset a few additional parameters.

\@xp\def\@xp\@arrayparboxrestore\@xp{\@arrayparboxrestore

\ingather@false\inalign@false \default@tag

\let\spread@equation\@spread@equation

\let\reset@equation\@empty

\def\print@eqnum{\tagform@\theequation}%

\def\incr@eqnum{\refstepcounter{equation}\let\incr@eqnum\@empty}%

}

48 THE AMSMATH PACKAGE

\iftag@ The switch tag@ is set to false at the beginning of every row and set to true by
a \tag command. This allows us to check whether there is more than one tag
on a row.

\newif\iftag@

\ifst@rred The switch st@rred is set to true by all starred environments and set to false
by the unstarred versions. One exception is the xxalignat environment where
this is set to true.

\newif\ifst@rred

\ifmeasuring@ All display environments get typeset twice—once during a “measuring” phase
and then again during a “production” phase; \ifmeasuring@ will be used to
determine which case we’re in, so we can take appropriate action.

\newif\ifmeasuring@

\ifshifttag@ \ifshifttag@ is used by gather to communicate between \calc@shift@gather
and \place@tag@gather whether an equation tag should be shifted to a sepa-
rate line. It’s also used by multline.

\newif\ifshifttag@

\row@

\newcount\row@

\column@ The counter \column@ is used by the alignment macros to keep track of the
current column.

\newcount\column@

\column@plus \column@plus is a useful abbreviation.

\def\column@plus{%

\global\advance\column@\@ne

}

\maxfields@

\newcount\maxfields@

\add@amp

\add@amps \def\add@amp#1{\if m#1&\@xp\add@amp\fi}

\def\add@amps#1{%

\begingroup

\count@#1\advance\count@-\column@

\edef\@tempa{\endgroup

\@xp\add@amp\romannumeral\number\count@ 000q}%

\@tempa

}

17. MULTILINE EQUATION ENVIRONMENTS 49

\andhelp@ The help text stored in \andhelp@ is used for errors generated by too many &

characters in a row.

\newhelp\andhelp@

{An extra & here is so disastrous that you should probably exit^^J

and fix things up.}

\eqnshift@ \eqnshift@ is used by align and gather as the indentation of the lines of the
environment from the left margin.

\newdimen\eqnshift@

\alignsep@

\newdimen\alignsep@

\tagshift@

\newdimen\tagshift@

\mintagsep \mintagsep is the minimum allowable separation between an equation and its
tag. We set it to half a quad in \textfont2, which is TEX’s built-in value.

\newcommand{\mintagsep}{.5\fontdimen6\textfont\tw@}

\minalignsep This should probably be a skip register [mjd,1999/06/18]

\newcommand{\minalignsep}{10pt}

\tagwidth@

\newdimen\tagwidth@

\totwidth@

\newdimen\totwidth@

\lineht@ The dimen register \lineht@ is used to keep track of the height (or depth, if
tags are on the right) of a row in an alignment.

\newdimen\lineht@

\tag@width

\savetaglength@

\shift@tag

\tag@shifts

\def\tag@width#1{%

\ifcase\@xp#1\tag@lengths\fi

}

\def\savetaglength@{%

\begingroup

\let\or\relax

\xdef\tag@lengths{\tag@lengths\or \the\wdz@}%

\endgroup

}

\def\shift@tag#1{%

\ifcase\@xp#1\tag@shifts\fi\relax

}

\let\tag@shifts\@empty

50 THE AMSMATH PACKAGE

\saveshift@

\def\saveshift@#1{%

\begingroup

\let\or\relax

\xdef\tag@shifts{\or#1\tag@shifts}%

\endgroup

}

\spread@equation This does the line-spacing adjustment that is normally wanted for displayed
equations. We also call \reset@strutbox@ here because otherwise a preceding
font size change might leave \strutbox@ with wrong contents. This is a less-
than-ideal solution but probably good enough for now, until the situation can
be overhauled.

\def\spread@equation{\reset@strutbox@

\openup\jot \let\spread@equation\@empty}

\let\@spread@equation\spread@equation

\displ@y

\displ@y@

\@display@init

\displ@y is from plain.tex, with \interdisplaylinepenalty changed to
\@eqpen. Also we transplanted most of its internal organs to \@display@init

to support \displ@y@ and other possibilities. Don’t try to make sense of
these naming conventions! They are a narrowly calculated mishmash of
Knuth/Spivak/Lamport/Mittelbach precedents. The reason for not cleaning
them up and forcing all names to a consistent scheme is that then in princi-
ple we’d have to do it everywhere else too. And we programmers are paranoid
about the side effects of name changes.

\def\displ@y{\@display@init{}}

\def\@display@init#1{%

Reset \lineht@ to avoid that this is incorrectly picked up from a previous
environment.

\global\lineht@\z@

\global\dt@ptrue \spread@equation

\everycr{%

\noalign{%

#1%

\ifdt@p

\global\dt@pfalse

\vskip-\lineskiplimit

\vskip\normallineskiplimit

\else

\penalty\@eqpen \global\dspbrk@lvl\m@ne

\fi

}%

}%

}

\displ@y@ is nearly the same; it additionally sets the tag@ switch and the
\column@ and \dspbrk@lvl counters to their default values. The argument is

17. MULTILINE EQUATION ENVIRONMENTS 51

normally a bit of code to empty out \raise@tag, but in multline we don’t
want that to happen in \everycr.

\def\displ@y@{\@display@init{%

\global\column@\z@ \global\dspbrk@lvl\m@ne

\global\tag@false \global\let\raise@tag\@empty

}}

\black@ This macro is made to produce an overfull box message and possibly (depending
on the value of \overfullrule) a rule in the margin if the total width of an
alignment is larger than the value of \displaywidth.

\def\black@#1{%

\noalign{%

\ifdim#1>\displaywidth

\dimen@\prevdepth

\nointerlineskip

\vskip-\ht\strutbox@

\vskip-\dp\strutbox@

\vbox{\noindent\hbox to\displaywidth{%

\hbox to#1{\strut@\hfill}}}%

\prevdepth\dimen@

\fi

}%

}

\savecounters@

\restorecounters@

These are used during the measuring phase of the various display math envi-
ronments to save and restore the values of all LATEX counters. We make these
local to a group, so nested environments works.

Changed \stepcounter to \csname c@...\endcsname to avoid overhead of
ifundefined test [mjd, 1995/01/20].

\def\savecounters@{%

\begingroup

\def\@elt##1{%

\global\csname c@##1\endcsname\the\csname c@##1\endcsname}%

\xdef\@gtempa{%

\cl@@ckpt

\let\@nx\restorecounters@\@nx\@empty

}%

\endgroup

\let\restorecounters@\@gtempa

}

%

\let\restorecounters@\@empty

\savealignstate@

\restorealignstate@

These are used to save the values of various parameters that are shared by align
and gather when the former is used inside the latter.

\def\savealignstate@{%

\begingroup

\let\or\relax

52 THE AMSMATH PACKAGE

\xdef\@gtempa{%

\global\totwidth@\the\totwidth@

\global\row@\the\row@

\gdef\@nx\tag@lengths{\tag@lengths}%

\let\@nx\restorealignstate@\@nx\@empty

}%

\endgroup

\let\restorealignstate@\@gtempa

}

\let\restorealignstate@\@empty

\savecolumn@

\restorecolumn@ \def\savecolumn@{%

\edef\restorecolumn@{%

\global\column@\number\column@

\let\@nx\restorecolumn@\@nx\@empty

}%

}

\let\restorecolumn@\@empty

17.3 Scanning the environment’s body
Several of the math alignment macros must scan their body twice: once to
determine how wide the columns are and then to actually typeset them. This
means that we must collect all text in this body before calling the environment
macros.

\@envbody We start by defining a token register to contain the body.

\newtoks\@envbody

\addto@envbody Then we define a macro to add something (i.e. its argument) to the token register
\@envbody.

\def\addto@envbody#1{\global\@envbody\@xp{\the\@envbody#1}}

\collect@body The macro \collect@body starts the scan for the \end{...} command of the
current environment. It takes a macro name as argument. This macro is sup-
posed to take the whole body of the environment as its argument. For exam-
ple, \begin{align} would call \collect@body\@align if @align#1{...} is the
macro that sets the alignment with body #1.

\def\collect@body#1{%

\@envbody{\@xp#1\@xp{\the\@envbody}}%

\edef\process@envbody{\the\@envbody\@nx\end{\@currenvir}}%

\@envbody\@emptytoks \def\begin@stack{b}%

If we simply called \collect@@body directly, the error message for a \par

token (usually from a blank line) would be

! Paragraph ended before \collect@@body was complete.

17. MULTILINE EQUATION ENVIRONMENTS 53

But we use a little finesse to get a more intelligible error message:

! Paragraph ended before \multline* was complete.

In order to avoid using up csnames unnecessarily we use the actual environment
name as the name of the temporary function that is \let to \collect@@body;
but then in order to preserve the theoretical possibility of nesting for environ-
ments that use \collect@body (not currently required by any amsmath envi-
ronment [mjd,1999/06/23]), we do the \let inside a group.

\begingroup

\@xp\let\csname\@currenvir\endcsname\collect@@body

This small twist eliminates the need for \expandafter’s in \collect@@body.

\edef\process@envbody{\@xp\@nx\csname\@currenvir\endcsname}%

\process@envbody

}

\push@begins When adding a piece of the current environment’s contents to \@envbody, we
scan it to check for additional \begin tokens, and add a ‘b’ to the stack for any
that we find.

\def\push@begins#1\begin#2{%

\ifx\end#2\else b\@xp\push@begins\fi

}

\collect@@body \collect@@body takes two arguments: the first will consist of all text up to the
next \end command, the second will be the \end command’s argument. If there
are any extra \begin commands in the body text, a marker is pushed onto a
stack by the \push@begins function. Empty state for this stack means that we
have reached the \end that matches our original \begin. Otherwise we need
to include the \end and its argument in the material that we are adding to our
environment body accumulator.

Historical Note: In a former implementation, the error messages resulting
from a typo in the environment name were unsatisfactory, because it was match-
ing of the environment name that was used to determine the end of our envi-
ronment body, instead of counting begin-end pairs. Thanks to Lars Hellström
for a suggestion that led to this improvement. [mjd,1999/06/23]

\def\collect@@body#1\end#2{%

\edef\begin@stack{\push@begins#1\begin\end \@xp\@gobble\begin@stack}%

\ifx\@empty\begin@stack

\endgroup

\@checkend{#2}%

\addto@envbody{#1}%

\else

\addto@envbody{#1\end{#2}}%

\fi

\process@envbody % A little tricky! Note the grouping

}

54 THE AMSMATH PACKAGE

17.4 Simple aligning environments
\math@cr@@@aligned From tabskip we get an extra space of minalignsep after every second column;

but when this falls at the right edge of the whole aligned structure, we need to
cancel that space.

\def\math@cr@@@aligned{%

\ifodd\column@ \let\next@\@empty

\else \def\next@{&\kern-\alignsep@}%

\fi

\next@ \cr

}

\ams@start@box This macro tests the optional positioning argument (in gathered or aligned.
It explicitly tests for the value b, c and t and if the value is different, then we
assume that it is a bracket group that belongs to the formula instead of being
an misspelled optional argument. (In earlier versions of the code anything other
than b or t was interpreted as c and the data was otherwise dropped.)

\def\ams@start@box#1{%

As we may pick up an arbitrary part of the formula by mistake, we need to
be very careful with the testing to avoid low-level errors. This is why we use
\detokenize. But we also need to expand the argument (if possible) in case the
position value is hidden inside a macro. We therefore apply the \romannumeral
trick (known as f-expansion in expl3) in its old form. The code assumes that
the default is correctly set up (which in this case is c).

\edef\reserved@a{\csname ams@pos@\expandafter\detokenize

\expandafter{\romannumeral-‘\0#1}\endcsname}%

\expandafter\ifx\reserved@a\relax

If the argument is neither b, c or t we save it in \ams@return@opt@arg, so it
can later be returned as part of the environment body. We could at this point
also issue a warning that bracket group was found at the start of the formula
and that it is safer to add a \relax before it.

\PackageWarning{amsmath}{%

Bracket group \detokenize{[#1]} at formula start!\MessageBreak

It could be a misspelled positional argument.\MessageBreak

If it belongs to the formula add a \relax in\MessageBreak

front to hide it}%

\def\ams@return@opt@arg{[#1]}\vcenter

If the argument was identified then we clear \ams@return@opt@arg (just in case
somebod ever nests these environment.

\else

\let\ams@return@opt@arg\@empty\reserved@a

\fi

}

\ams@pos@t

\ams@pos@b

\ams@pos@c
\def\ams@pos@t{\vtop}

\def\ams@pos@b{\vbox}

17. MULTILINE EQUATION ENVIRONMENTS 55

\def\ams@pos@c{\vcenter}

And we accept an empty argument as a way to get the default (as that was the
case before as well, albeit by mistake in some sense).

\let\ams@pos@\ams@pos@c

\start@aligned The aligned and alignedat environments are identical except that the lat-
ter takes a mandatory argument to specify the number of align structures,
while the former allows any number of align structures automatically (the use of
alignedat is deprecated). So, they will be defined in terms of \start@aligned,
which will take two arguments. The first argument specifies the placement of
the environments; it is either c, t, or b. The second is the number of align
structures; a value of −1 means that an arbitrary number are allowed.

\newcommand{\start@aligned}[2]{%

\RIfM@\else

\nonmatherr@{\begin{\@currenvir}}%

\fi

\savecolumn@ % Assumption: called inside a group

The \null here is to keep the \, glue from causing the invocation of the clause
in TEX’s built-in tag placement algorithm that can cause an equation to be
shifted all the way over to the margin.

\alignedspace@left

Select the right kind of box based on the optional argument #1.

\ams@start@box{#1}\bgroup

\maxfields@#2\relax

\ifnum\maxfields@>\m@ne

\multiply\maxfields@\tw@

Introduced new \math@cr@@@ so we can provide standard error message for too
many &’s in alignedat.

\let\math@cr@@@\math@cr@@@alignedat

\alignsep@\z@skip

\else

\let\math@cr@@@\math@cr@@@aligned

\alignsep@\minalignsep

\fi

Reset the meaning of \\.

\Let@ \chardef\dspbrk@context\@ne

Restore the default definition of \tag (error message), in case aligned is used
inside, e.g., a gather environment that accepts \tag.

\default@tag

\spread@equation % no-op if already called

Finally we start the alignment itself. For aligned we add \minalignsep after
every second column to mimic the behavior of align. For alignedat the user
has to specify interalign space explicitly.

\global\column@\z@

56 THE AMSMATH PACKAGE

\ialign\bgroup

&\column@plus

\hfil

\strut@

$\m@th\displaystyle{##}$%

\tabskip\z@skip

&\column@plus

$\m@th\displaystyle{{}##}$%

\hfil

\tabskip\alignsep@

\crcr

If we picked up a bracket group by mistake here is the place to return it for
processing.

\ams@return@opt@arg

}

\math@cr@@@alignedat \math@cr@@@alignedat checks to make sure the user hasn’t put in too many &s
in alignedat. Since alignedat doesn’t use \displ@y@, we also reset \column@
here. Note than in aligned, \column@ will increase without bound, since it
never gets reset, but this is harmless.

\def\math@cr@@@alignedat{%

\ifnum\column@>\maxfields@

\begingroup

\measuring@false

\@amsmath@err{Extra & on this line}%

{\the\andhelp@}% "An extra & here is disastrous"

\endgroup

\fi

\global\column@\z@

\cr

}

\alignsafe@testopt Testing for an optional argument can be really, really tricky in certain com-
plicated contexts. This we discovered by getting some bug reports for uses of
aligned. So here is a safer form of LATEX’s \@testopt function.

\def\alignsafe@testopt#1#2{%

\relax\iffalse{\fi\ifnum‘}=0\fi

\@ifnextchar[%

{\let\@let@token\relax \ifnum‘{=\z@\fi\iffalse}\fi#1}%

{\let\@let@token\relax \ifnum‘{=\z@\fi\iffalse}\fi#1[#2]}%

}

aligned (env.) The aligned environment takes an optional argument that indicates its vertical
position in relation to surrounding material: t, c, or b for top, center, or bottom.

\newenvironment{aligned}{%

\let\@testopt\alignsafe@testopt

\aligned@a

}{%

17. MULTILINE EQUATION ENVIRONMENTS 57

\crcr\egroup

\restorecolumn@

\egroup

}

\newcommand{\aligned@a}[1][c]{\start@aligned{#1}\m@ne}

alignedat (env.) To get a top or bottom positioned alignedat structure, you would write some-
thing like

\begin{alignedat}[t]{3}

\newenvironment{alignedat}{%

\let\@testopt\alignsafe@testopt

\alignedat@a

}{%

\endaligned

}

\newcommand{\alignedat@a}[1][c]{\start@aligned{#1}}

gathered (env.) The gathered environment is for several lines that are centered independently.

\newenvironment{gathered}[1][c]{%

\RIfM@\else

\nonmatherr@{\begin{gathered}}%

\fi

\alignedspace@left

Select the right kind of box based on the optional argument #1.

\ams@start@box{#1}\bgroup

\Let@ \chardef\dspbrk@context\@ne \restore@math@cr

\spread@equation

\ialign\bgroup

\hfil\strut@$\m@th\displaystyle##$\hfil

\crcr

And put a mistaking picked up bracket group back:

\ams@return@opt@arg

}{%

\endaligned

}

17.5 The gather environment
\start@gather

\def\start@gather#1{%

\RIfM@

\nomath@env

\DN@{\@namedef{end\@currenvir}{}\@gobble}%

\else

\dollardollar@begin

#1%

\ifst@rred \else \global\@eqnswtrue \fi

58 THE AMSMATH PACKAGE

\let\next@\gather@

\fi

\collect@body\next@

}

gather (env.)

gather* (env.) \newenvironment{gather}{%

% \changes{v2.17w}{2025/03/08}{Use \cs{dollardollar@begin} and

% \cs{dollardollar@end} instead of \texttt{\$\$} for tagging support}

\start@gather\st@rredfalse

}{%

\math@cr \black@\totwidth@ \egroup

\dollardollar@end\ignorespacesafterend

}

\newenvironment{gather*}{%

\start@gather\st@rredtrue

}{%

\endgather

}

\gather@

\def\gather@#1{%

\ingather@true \let\split\insplit@

\let\tag\tag@in@align \let\label\label@in@display

\chardef\dspbrk@context\z@

\intertext@ \displ@y@ \Let@

\let\math@cr@@@\math@cr@@@gather

\gmeasure@{#1}%

\global\shifttag@false

\tabskip\z@skip

\global\row@\@ne

\halign to\displaywidth\bgroup

\strut@

\setboxz@h{$\m@th\displaystyle{##}$}%

\calc@shift@gather

\set@gather@field

\tabskip\@centering

&\setboxz@h{\strut@{##}}%

\place@tag@gather

\tabskip \iftagsleft@ \gdisplaywidth@ \else \z@skip \span\fi

\crcr

#1%

}

\gmeasure@

\def\gmeasure@#1{%

\begingroup

\measuring@true

17. MULTILINE EQUATION ENVIRONMENTS 59

\totwidth@\z@

\global\let\tag@lengths\@empty

\savecounters@

\setbox\@ne\vbox{%

\everycr{\noalign{\global\tag@false

\global\let\raise@tag\@empty \global\column@\z@}}%

\let\label\@gobble

\halign{%

\setboxz@h{$\m@th\displaystyle{##}$}%

\ifdim\wdz@>\totwidth@

\global\totwidth@\wdz@

\fi

&\setboxz@h{\strut@{##}}%

\savetaglength@

\crcr

#1%

\math@cr@@@

}%

}%

\restorecounters@

\if@fleqn

\global\advance\totwidth@\@mathmargin

\fi

\iftagsleft@

\ifdim\totwidth@>\displaywidth

\global\let\gdisplaywidth@\totwidth@

\else

\global\let\gdisplaywidth@\displaywidth

\fi

\fi

\endgroup

}

\math@cr@@@gather Modified \math@cr@@@gather so that it always puts in the final field, which
needs to be done under the new method for determining tag placement. This is
probably more efficient anyway.

\def\math@cr@@@gather{%

\ifst@rred\nonumber\fi

&\relax

\make@display@tag

\ifst@rred\else\global\@eqnswtrue\fi

We advance \row@ here, rather than at the beginning of the preamble, because
otherwise the split environment will cause \row@ to be advanced twice instead
of once.

\global\advance\row@\@ne

\cr

}

\calc@shift@gather \calc@shift@gather has must make two decisions: (1) whether the equation

60 THE AMSMATH PACKAGE

tag for the current line should be put on a separate line and (2) what the distance
between the equation and the equation tag should be. We implement TEX’s
built-in tag-placement as well as possible, with one improvement: the minimum
separation between tag and equation is now a user-settable parameter.

[1995/01/17] Added a check to make sure that the width of the tag on
the current line is > 0 before testing to see if tagwidth + linewidth +
mintagsep > displaywidth. Since an imbedded align shows up as line with width
\displaywidth, and even lines without a tag get processed as if an empty tag
were present, the result was that the empty tag assigned to the line containing
the align was being shifted downwards, creating extra space after the align.

\def\calc@shift@gather{%

\dimen@\mintagsep\relax

\tagwidth@\tag@width\row@\relax

If we’re in fleqn mode, there is no flexibility about placement of the equation,
so all we can do is see if there’s room for the tag in the given margin.

\if@fleqn

\global\eqnshift@\@mathmargin

\ifdim\tagwidth@>\z@

\advance\dimen@\tagwidth@

\iftagsleft@

\ifdim\dimen@>\@mathmargin

\global\shifttag@true

\fi

\else

\advance\dimen@\@mathmargin

\advance\dimen@\wdz@

\ifdim\dimen@>\displaywidth

\global\shifttag@true

\fi

\fi

\fi

\else

\global\eqnshift@\displaywidth

\global\advance\eqnshift@-\wdz@

\ifdim\tagwidth@>\z@

\multiply\dimen@\tw@

\advance\dimen@\wdz@

\advance\dimen@\tagwidth@

\ifdim\dimen@>\displaywidth

\global\shifttag@true

\else

\ifdim\eqnshift@<4\tagwidth@

\global\advance\eqnshift@-\tagwidth@

\fi

\fi

\fi

\global\divide\eqnshift@\tw@

\iftagsleft@

17. MULTILINE EQUATION ENVIRONMENTS 61

\global\eqnshift@-\eqnshift@

\global\advance\eqnshift@\displaywidth

\global\advance\eqnshift@-\wdz@

\fi

\ifdim\eqnshift@<\z@

\global\eqnshift@\z@

\fi

\fi

}

\place@tag@gather

\set@gather@field \def\place@tag@gather{%

\iftagsleft@

\kern-\gdisplaywidth@

\ifshifttag@

\rlap{\vbox{%

\normalbaselines

\boxz@

\vbox to\lineht@{}%

\raise@tag

}}%

\global\shifttag@false

\else

\rlap{\boxz@}%

\fi

\else

\ifdim\totwidth@>\displaywidth

\dimen@\totwidth@

\advance\dimen@-\displaywidth

\kern-\dimen@

\fi

\ifshifttag@

\llap{\vtop{%

\raise@tag

\normalbaselines

\setbox\@ne\null

\dp\@ne\lineht@

\box\@ne

\boxz@

}}%

\global\shifttag@false

\else

\llap{\boxz@}%

\fi

\fi

}

%

\def\set@gather@field{%

\iftagsleft@

\global\lineht@\ht\z@

62 THE AMSMATH PACKAGE

\else

\global\lineht@\dp\z@

\fi

\kern\eqnshift@

\boxz@

\hfil

}

17.6 The align family of environments
The align, flalign, alignat, xalignat, and xxalignat environments are vir-
tually identical, and thus will share much code. We’ll refer to the environments
generically as “align” and will distinguish between them explicitly only when
necessary.

\ifxxat@

\ifcheckat@

\xatlevel@

The \xatlevel@macro will be used, informally speaking, to distinguish between
the alignat and xalignat, and xxalignat environments.

\newif\ifxxat@

\newif\ifcheckat@

\let\xatlevel@\@empty

\start@align \start@align will be called by all of the align-like environments. The first
argument will be the \xatlevel@, i.e., 0, 1, or 2; the second argument will
be either \st@rredtrue or \st@rredfalse. The third argument will be the
number of aligned structures in the environment (either as supplied by the
user, or −1 to indicate that checking shouldn’t be done). After performing the
appropriate error detection and initialization, \start@align calls \align@.

Note that the \equation counter is no longer stepped at the beginning of
these environments.

TODO: Implement \shoveleft and \shoveright for align.

\def\start@align#1#2#3{%

\let\xatlevel@#1% always \z@, \@ne, or \tw@

\maxfields@#3\relax

\ifnum\maxfields@>\m@ne

\checkat@true

\ifnum\xatlevel@=\tw@

\xxat@true

\fi

\multiply\maxfields@\tw@

\else

\checkat@false

\fi

\ifingather@

\iffalse{\fi\ifnum0=‘}\fi

\DN@{\vcenter\bgroup\savealignstate@\align@#2}%

\else

\ifmmode

17. MULTILINE EQUATION ENVIRONMENTS 63

\if@display

\DN@{\align@recover}%

\else

\nomath@env

\DN@{\@namedef{end\@currenvir}{}\@gobble}%

\fi

\else

\dollardollar@begin

\let\split\insplit@

\DN@{\align@#2}%

\fi

\fi

\collect@body\next@

}

With version 1.2 of amsmath, it was possible to use align* and relatives in
certain wrong contexts without getting an error, e.g.

\begin{equation*}

\begin{align*}

...

\end{align*}

\end{equation*}

For backward compatibility we therefore give only a warning for this condi-
tion instead of a full error, and try to recover using the aligned environment.
The alignment of the material may be adversely affected but it will at least
remain readable.

\def\align@recover#1#2#3{%

\endgroup

\@amsmath@err{%

Erroneous nesting of equation structures;\MessageBreak

trying to recover with ‘aligned’%

}\@ehc

\begin{aligned}\relax#1\end{aligned}%

}

align (env.)

align* (env.)

flalign (env.)

flalign* (env.)

alignat (env.)

alignat* (env.)

xalignat (env.)

xalignat* (env.)

xxalignat (env.)

The definitions of the various align environments are quite straight-forward.

\newenvironment{alignat}{%

\start@align\z@\st@rredfalse

}{%

\endalign

}

\newenvironment{alignat*}{%

\start@align\z@\st@rredtrue

}{%

\endalign

}

\newenvironment{xalignat}{%

64 THE AMSMATH PACKAGE

\start@align\@ne\st@rredfalse

}{%

\endalign

}

\newenvironment{xalignat*}{%

\start@align\@ne\st@rredtrue

}{%

\endalign

}

\newenvironment{xxalignat}{%

\start@align\tw@\st@rredtrue

}{%

\endalign

}

\newenvironment{align}{%

\start@align\@ne\st@rredfalse\m@ne

}{%

\math@cr \black@\totwidth@

\egroup

\ifingather@

\restorealignstate@

\egroup

\nonumber

\ifnum0=‘{\fi\iffalse}\fi

\else

\dollardollar@end

\fi

\ignorespacesafterend

}

\newenvironment{align*}{%

\start@align\@ne\st@rredtrue\m@ne

}{%

\endalign

}

\newenvironment{flalign}{%

\start@align\tw@\st@rredfalse\m@ne

}{%

\endalign

}

\newenvironment{flalign*}{%

\start@align\tw@\st@rredtrue\m@ne

}{%

\endalign

}

\align@ TODO: Some of these sets of initializations show up in multiple places. It might
be worth making an abbreviation for them.

\def\align@#1#2{%

\inalign@true \intertext@ \Let@ \chardef\dspbrk@context\z@

17. MULTILINE EQUATION ENVIRONMENTS 65

\ifingather@\else\displ@y@\fi

\let\math@cr@@@\math@cr@@@align

\ifxxat@\else \let\tag\tag@in@align \fi

\let\label\label@in@display

#1% set st@r

\ifst@rred\else \global\@eqnswtrue \fi

\measure@{#2}%

\global\row@\z@

\tabskip\eqnshift@

\halign\bgroup

\span\align@preamble\crcr

#2%

}

\math@cr@@@align

\def\math@cr@@@align{%

\ifst@rred\nonumber\fi

\if@eqnsw \global\tag@true \fi

\global\advance\row@\@ne

\add@amps\maxfields@

\omit

\kern-\alignsep@

\iftag@

\setboxz@h{\@lign\strut@{\make@display@tag}}%

\place@tag

\fi

\ifst@rred\else\global\@eqnswtrue\fi

\global\lineht@\z@

\cr

}

\math@cr@@@align@measure

\def\math@cr@@@align@measure{%

&\omit

\global\advance\row@\@ne

\ifst@rred\nonumber\fi

\if@eqnsw \global\tag@true \fi

\ifnum\column@>\maxfields@

\ifcheckat@

\begingroup

\measuring@false

\@amsmath@err{Extra & on this line}%

{\the\andhelp@}% "An extra & here is disastrous"

\endgroup

\else

\global\maxfields@\column@

\fi

\fi

\setboxz@h{\@lign\strut@{%

\if@eqnsw

66 THE AMSMATH PACKAGE

\stepcounter{equation}%

\tagform@\theequation

\else

\iftag@\df@tag\fi

\fi

}}%

\savetaglength@

\ifst@rred\else\global\@eqnswtrue\fi

\cr

}

\field@lengths

\savefieldlength@

\fieldlengths@
\let\field@lengths\@empty

\def\savefieldlength@{%

\begingroup

\let\or\relax

\xdef\field@lengths{%

\field@lengths

\ifnum\column@=0

\or

\else

,%

\fi

\the\wdz@

}%

\endgroup

}

\def\fieldlengths@#1{%

\ifcase\@xp#1\field@lengths\fi

}

\maxcolumn@widths \maxcolumn@widths will be used to hold the widths of the fields of the alignat
environment. The widths will be separated by the token \or, making it easy to
extract a given width using \ifcase.

\let\maxcolumn@widths\@empty

\maxcol@width \maxcol@width n = maximum width of nth column of the current alignat (i.e.,
the nth field of \maxcolumn@widths.) It expands to a ⟨dimen⟩, so it can be used
as the right-hand side of a ⟨variable assignment⟩ or ⟨arithmetic⟩ statement. Its
argument can be any ⟨number⟩, ⟨integer variable⟩ or macro that expands to one
of these. [Check to make sure this is true.]

This is subtler than it looks.

\def\maxcol@width#1{%

\ifcase\@xp#1\maxcolumn@widths\fi\relax

}

17. MULTILINE EQUATION ENVIRONMENTS 67

Now comes the real fun. A typical align environments looks something
like this, where the vertical bars mark the edges of the fields of the underlying
\halign:

1 2 3 4 5 6

Vi + qivj = vi, Xi = xi − qixj , Ui = ui, for i ̸= j; (3)

Vj = vj , Xj = xj , Uj = uj +
∑
i̸=j

qiui. (4)

Note that each align structure consists of two fields, with no space between them
(a small space has been added here to highlight the boundaries). Furthermore,
the text inside the odd-numbered fields is flushright, while the text inside the
even-numbered fields is flushleft. The equation tags (shown on the right here)
can be on either the right or the left. If there is not room (in a sense to be
defined shortly) for the tag on the same line as the equation, the tag will be
shifted to a separate line.

Each environment also has a certain number of “flexible spaces,” meaning
spaces whose width we are allowed to adjust to take up the amount of “free
space” in the line, meaning the space not taken up by the equation tag and the
fields of the underlying \halign.

The flexible spaces come in two flavors: interalign spaces and margin spaces.
If there are n align structures (n = 3 in the illustration above), there are n− 1
interalign spaces, unless we are in an alignat environment, in which case there
are no flexible interalign spaces.

The number of margin spaces is a little more complicated: Normally, there
are two, but if we’re in fleqn mode, there is only one. Furthermore, if we’re
in an xxalignat or flalign environment (corresponding to \xatlevel@ = 2,
then there are no flexible margin spaces.

Calculating the interalign and margin spaces is done in two stages.
First, the total amount of free space is divided uniformly among all the

flexible spaces, without regard for the lengths of the tags on the various lines. For
the non-fleqn case, this corresponds to centering the align structures between
the margins. Note that in fleqn mode, the right margin is still allowed to be
larger than \@mathmargin. This introduces an element of asymmetry into the
appearance of the environment, but it has the advantage of leaving more space
for equation tags in the right margin. If the right margin were constrained to be
equal to the left margin in this case, tags would need to be shifted to a separate
line more often than would be desirable.

Ordinarily, all flexible spaces will be given the same width. However, this
is not invariably true, since the interalign spaces are constrained to be at least
\minalignsep wide, while—in the absence of equation tags, at least—the mar-
gin spaces are allowed to shrink to zero. As we shall see in a minute, if
there are tags in the environment, then the margins are also bounded below
by \mintagsep.

Next, we examine each line of the environment that has a tag to see if there
is a gap of at least \mintagsep between the equation and its tag. If there isn’t,

68 THE AMSMATH PACKAGE

we attempt to center the equation between the tag and the opposite margin,
leaving a gap of at least \mintagsep on either side, in order to preserve some
symmetry, i.e., we want the equation to look like it’s centered between the
margin and the tag, so we don’t want the margin space to be less than the gap
between the tag and the equation. (Arguably, it would be better to allow the
margin space to shrink to zero in this case in order to avoid shifting the tag
to a separate line at any cost, but that would require all of our calculations to
be a little more complicated and hence a little slower.) Finally, if no values of
the interalign spaces and the margins (with the constraints outlined above) will
produce an acceptable distance between the equation and its tag, then the tag
will be shifted to a separate line.

\measure@ \measure@ collects the various bits of information that we’ll need to perform
the calculations outlined above, namely, the number of align structures in the
environment, the natural lengths of the fields on each row, the maximum widths
of each column, and the widths of the equation tags on each line. It also
calculates the number of flexible interalign and margin spaces and computes the
initial values of the parameters \eqnshift@ and \alignsep@, which correspond
to the widths of the margins and the interalign spaces, respectively.

\def\measure@#1{%

\begingroup

\measuring@true

\global\eqnshift@\z@

\global\alignsep@\z@

\global\let\tag@lengths\@empty

\global\let\field@lengths\@empty

\savecounters@

\global\setbox0\vbox{%

\let\math@cr@@@\math@cr@@@align@measure

\everycr{\noalign{\global\tag@false

\global\let\raise@tag\@empty \global\column@\z@}}%

\let\label\@gobble

\global\row@\z@

\tabskip\z@

\halign{\span\align@preamble\crcr

#1%

\math@cr@@@

\global\column@\z@

\add@amps\maxfields@\cr

}%

}%

\restorecounters@

It’s convenient to have \maxfields@ rounded up to the nearest even number,
so that \maxfields@ is precisely twice the number of align structures.

\ifodd\maxfields@

\global\advance\maxfields@\@ne

\fi

17. MULTILINE EQUATION ENVIRONMENTS 69

It doesn’t make sense to have a single align structure in either flalign or
xxalignat. So, we check for that case now and, if necessary, switch to an
align or alignat. Arguably, we should issue a warning message, but why
bother?

\ifnum\xatlevel@=\tw@

\ifnum\maxfields@<\thr@@

\let\xatlevel@\z@

\fi

\fi

\box0 now contains the lines of the \halign. After the following maneuver,
\box1 will contain the last line of the \halign, which is what we’re interested in.
(Incidentally, the penalty we’re removing is the \@eqpen inserted by \math@cr.
Normally, this is \interdisplaylinepenalty, unless the user has overridden
that with a \displaybreak command.)

\setbox\z@\vbox{%

\unvbox\z@ \unpenalty \global\setbox\@ne\lastbox

}%

\box1 begins with \tabskip glue and contains alternating \hboxes (the fields
whose widths we’re trying to get) and \tabskip glue [need better diagram]:

\hbox{\tabskip\hbox\tabskip...\hbox\tabskip}

In fact, all the \tabskip glue will be 0pt, because all the \tabskips in an
alignat environment have a natural width of 0pt, and the \halign has been
set in its natural width.

One nice result of this is that we can read \totwidth@ off immediately,
since it is just the width of \box1, plus \@mathmargin if we’re in fleqn mode.
(Actually, we also have to take \minalignsep into account, but we’ll do that
later):

\global\totwidth@\wd\@ne

\if@fleqn \global\advance\totwidth@\@mathmargin \fi

Now we initialize \align@lengths and start peeling the boxes off, one by one,
and adding their widths to \align@lengths. We stop when we run out of boxes,
i.e., when \lastbox returns a void box. We’re going to build a list using \or

as a delimiter, so we want to disable it temporarily.

\global\let\maxcolumn@widths\@empty

\begingroup

\let\or\relax

\loop

\global\setbox\@ne\hbox{%

\unhbox\@ne \unskip \global\setbox\thr@@\lastbox

}%

\ifhbox\thr@@

\xdef\maxcolumn@widths{ \or \the\wd\thr@@ \maxcolumn@widths}%

\repeat

\endgroup

70 THE AMSMATH PACKAGE

Now we calculate the number of flexible spaces and the initial values of
\eqnshift@ and \alignsep@. We start by calculating \displaywidth −
\totwidth@, which gives us the total amount of “free space” in a row.

\dimen@\displaywidth

\advance\dimen@-\totwidth@

Next we calculate the number of columns of flexible spaces in the display, which
depends on whether we’re in fleqn mode and in which particular environment
we are in.

We use \@tempcnta to store the total number of flexible spaces in the align
and \@tempcntb for the number of interalign spaces.

\ifcase\xatlevel@

In alignat, the interalign spaces are under user control, not ours. So, we set
\alignsep@ and \minalignsep both equal to 0pt. Later, when calculating a
new value for \alignsep@, we will only save the new value if it is less than
the current value of \alignsep@ (i.e., \alignsep@ will never increase). Since
the values we calculate will never be negative, this will ensure that \alignsep@
remains zero in alignat.

\global\alignsep@\z@

\let\minalignsep\z@

\@tempcntb\z@

In fleqn mode, the left margin—and hence the right margin in this case—is
fixed. Otherwise, we divide the free space equally between the two margins.

\if@fleqn

\@tempcnta\@ne

\global\eqnshift@\@mathmargin

\else

\@tempcnta\tw@

\global\eqnshift@\dimen@

\global\divide\eqnshift@\@tempcnta

\fi

\or

In an align or xalignat environment with n aligned structures, there are n−1
interalign spaces and either 1 or 2 flexible margins, depending on whether we’re
in fleqn mode or not.

\@tempcntb\maxfields@

\divide\@tempcntb\tw@

\@tempcnta\@tempcntb

\advance\@tempcntb\m@ne

If we are in fleqn mode, we fix the left margin and divide the free space equally
among the interalign spaces and the right margin.

\if@fleqn

\global\eqnshift@\@mathmargin

\global\alignsep@\dimen@

\global\divide\alignsep@\@tempcnta

\else

17. MULTILINE EQUATION ENVIRONMENTS 71

Otherwise, we divide the free space equally among the interalign spaces and
both margins.

\global\advance\@tempcnta\@ne

\global\eqnshift@\dimen@

\global\divide\eqnshift@\@tempcnta

\global\alignsep@\eqnshift@

\fi

\or

Finally, if we’re in an flalign or xxalignat environment, there are no flexible
margins and n− 1 flexible interalign spaces.

\@tempcntb\maxfields@

\divide\@tempcntb\tw@

\global\advance\@tempcntb\m@ne

\global\@tempcnta\@tempcntb

\global\eqnshift@\z@

\global\alignsep@\dimen@

If we’re in fleqn mode, we need to add back the \@mathmargin that was re-
moved when \dimen@ was originally calculated above.

\if@fleqn

\global\advance\alignsep@\@mathmargin\relax

\fi

\global\divide\alignsep@\@tempcntb

\fi

Now we make sure \alignsep@ isn’t too small.

\ifdim\alignsep@<\minalignsep\relax

\global\alignsep@\minalignsep\relax

\ifdim\eqnshift@>\z@

\if@fleqn\else

\global\eqnshift@\displaywidth

\global\advance\eqnshift@-\totwidth@

\global\advance\eqnshift@-\@tempcntb\alignsep@

\global\divide\eqnshift@\tw@

\fi

\fi

\fi

\ifdim\eqnshift@<\z@

\global\eqnshift@\z@

\fi

\calc@shift@align

Next, we calculate the value of \tagshift@. This is the glue that will be inserted
in front of the equation tag to make sure it lines up flush against the appropriate
margin.

\global\tagshift@\totwidth@

\global\advance\tagshift@\@tempcntb\alignsep@

\if@fleqn

\ifnum\xatlevel@=\tw@

\global\advance\tagshift@-\@mathmargin\relax

72 THE AMSMATH PACKAGE

\fi

\else

\global\advance\tagshift@\eqnshift@

\fi

\iftagsleft@ \else

\global\advance\tagshift@-\displaywidth

\fi

Finally, we increase \totwidth@ by an appropriate multiple of \minalignsep.
If the result is greater than \displaywidth, it means that at least one line in
the align is overfull and we will issue an appropriate warning message (via
\bl@ck) at the end of the environment.

\dimen@\minalignsep\relax

\global\advance\totwidth@\@tempcntb\dimen@

\ifdim\totwidth@>\displaywidth

\global\let\displaywidth@\totwidth@

\else

\global\let\displaywidth@\displaywidth

\fi

\endgroup

}

The code for calculating the appropriate placement of equation tags in the
align environments is quite complicated and varies wildly depending on the
settings of the tagsleft@ and @fleqn switches. To minimize memory and hash
space usage, we only define the variant appropriate for the current setting of
those switches.

It would be worthwhile to examine this code more closely someday and see
if it could be optimized any.

Tag placement when \tagsleft@true, \@fleqntrue. We begin with the
version of \calc@shift@align appropriate for flush-left equations with tags on
the left.

\calc@shift@align This is the simplest case. Since the left margin is fixed, in general the only
thing to do is check whether there is room for the tag in the left margin. The
only exception is that if \eqnshift@ = 0pt—meaning that we’re in a flalign

environment and this is the first line with a tag that we’ve encountered—then
we set \eqnshift@ = \@mathmargin and recalculate \alignsep@. This is done
by \x@calc@shift@lf.

\iftagsleft@\if@fleqn

\def\calc@shift@align{%

\global\let\tag@shifts\@empty

\begingroup

\@tempdima is initialized to \@mathmargin−\mintagsep, which yields the max-
imum size of a tag that will not be shifted to another line.

\@tempdima\@mathmargin\relax

\advance\@tempdima-\mintagsep\relax

17. MULTILINE EQUATION ENVIRONMENTS 73

Now we examine each row in turn. If the width of the tag on the line is non-
positive—meaning either that there is no tag or else that the user has forced it
to have zero width—we mark the tag to remain unshifted. Otherwise, we call
\x@calc@shift@lf to determine whether any adjustments need to be made to
\eqnshift@ and \alignsep@. Note the difference in treatment of zero-width
tags between this code and TEX’s built-in algorithm: here, a width of zero
prohibits the tag from being shifted, while in TEX’s built-in algorithm, a width
of zero forces the tag to be shifted.

\loop

\ifnum\row@>0

\ifdim\tag@width\row@>\z@

\x@calc@shift@lf

\else

\saveshift@0%

\fi

\advance\row@\m@ne

\repeat

\endgroup

}

\x@calc@shift@lf As mentioned above, \x@calc@shift@lf first checks to see if the current left
margin is set to 0 and, if so, resets it to \@mathmargin and recalculates
\alignsep@. Next, it checks whether the length of the current tag exceeds the
previously calculated limit and, if so, marks the tag to be shifted to a separate
line.

\def\x@calc@shift@lf{%

\ifdim\eqnshift@=\z@

\global\eqnshift@\@mathmargin\relax

\alignsep@\displaywidth

\advance\alignsep@-\totwidth@

\global\divide\alignsep@\@tempcntb

\ifdim\alignsep@<\minalignsep\relax

\global\alignsep@\minalignsep\relax

\fi

\fi

\ifdim\tag@width\row@>\@tempdima

\saveshift@1%

\else

\saveshift@0%

\fi

}

\fi\fi

Tag placement when \tagsleft@false, \@fleqntrue. Next we consider
the case when equations are flush-left, but tags are on the right. This case
is somewhat more complicated than the previous one, since we can adjust the
right margin by varying the inter-align separation. Thus, when a tag is found
to be too close to its equation, we first attempt to decrease \alignsep@ enough

74 THE AMSMATH PACKAGE

to move the equation off to an acceptable distance. Only if that would require a
value of \alignsep@ less than \minalignsep do we move the tag to a separate
line.

\calc@shift@align This version of \calc@shift@align differs from the previous version only in
calling \x@calc@shift@rf rather than \x@calc@shift@lf.

\iftagsleft@\else\if@fleqn

\def\calc@shift@align{%

\global\let\tag@shifts\@empty

\begingroup

\loop

\ifnum\row@>0

\ifdim\tag@width\row@>\z@

\x@calc@shift@rf

\else

\saveshift@0%

\fi

\advance\row@\m@ne

\repeat

\endgroup

}

\x@calc@shift@rf To start, we need to know two quantities: the number of align structures in
the current row and the “effective length” of the row, defined as the distance
from the left margin to the right edge of the text assuming that \eqnshift@ and
\alignsep@ are both 0. To get the number of align structures, we first count the
number of columns by counting the number of entries in the \fieldlengths@

for the current row. The effective length is calculated by \x@rcalc@width and
put in the temporary register \@tempdimc, using \@tempdimb as an auxiliary
variable.

\def\x@calc@shift@rf{%

\column@\z@

\@tempdimb\z@

\@tempdimc\z@

\edef\@tempb{\fieldlengths@\row@}%

\@for\@tempa:=\@tempb\do{%

\advance\column@\@ne

\x@rcalc@width

}%

\begingroup

If there are n columns in the current row, then there are ⌊(n + 1)/2⌋ align
structures and ⌊(n− 1)/2⌋ interalign spaces.

\advance\column@\m@ne

\divide\column@\tw@

If this is smaller than the maximum number of interalign spaces in the environ-
ment, then we need to reduce \@tempcnta (the total number of flexible spaces in
the current line) by \@tempcntb−\column@ and reset \@tempcntb to \column@.

17. MULTILINE EQUATION ENVIRONMENTS 75

\ifnum\@tempcntb>\column@

\advance\@tempcnta-\@tempcntb

\advance\@tempcnta\column@

\@tempcntb\column@

\fi

Next, we add the width of the tag and the (fixed) left margin to the effective
length calculated above. This can be used to calculate how much “free space”
there is in the current line and thus how much leeway we have to increase the
amount of space between the tag and the equation.

\tagwidth@\tag@width\row@\relax

\@tempdima\eqnshift@

\advance\@tempdima\@tempdimc\relax

\advance\@tempdima\tagwidth@

The first thing to check is whether the tag should be shifted to a separate line.
To do this, we add the minimum interalign separation and the \mintagsep to
the value of \@tempdima just calculated. This yields the minimum acceptable
length of the current line. If that is greater than \displaywidth, we mark the
tag to be calculated. Otherwise, we mark the tag to be kept on the same line
and then check to see if the \alignsep@ needs to be reduced to make room for
the tag.

\dimen@\minalignsep\relax

\multiply\dimen@\@tempcntb

\advance\dimen@\mintagsep\relax

\advance\dimen@\@tempdima

\ifdim\dimen@>\displaywidth

\saveshift@1%

\else

\saveshift@0%

Now we perform essentially the same calculation, but using the current value
of \alignsep@ instead of \minalignsep. This gives the current length of the
line. If this is greater than \displaywidth, we recalculate \alignsep@ to make
room for the tag.

\dimen@\alignsep@\relax

\multiply\dimen@\@tempcntb

\advance\dimen@\@tempdima

\advance\dimen@\tagwidth@

\ifdim\dimen@>\displaywidth

\dimen@\displaywidth

\advance\dimen@-\@tempdima

\ifnum\xatlevel@=\tw@

\advance\dimen@-\mintagsep\relax

\fi

\divide\dimen@\@tempcnta

\ifdim\dimen@<\minalignsep\relax

\global\alignsep@\minalignsep\relax

\else

\global\alignsep@\dimen@

76 THE AMSMATH PACKAGE

\fi

\fi

\fi

\endgroup

}

\fi\fi

Tag placement when \tagsleft@false, \@fleqnfalse. This is similar to
the previous case, except for the added complication that both \alignsep@

and \eqnshift@ can vary, which makes the computations correspondingly more
complicated.

\calc@shift@align

\iftagsleft@\else\if@fleqn\else

\def\calc@shift@align{%

\global\let\tag@shifts\@empty

\begingroup

\loop

\ifnum\row@>0

\ifdim\tag@width\row@>\z@

\x@calc@shift@rc

\else

\saveshift@0%

\fi

\advance\row@\m@ne

\repeat

\endgroup

}

\x@calc@shift@rc

\def\x@calc@shift@rc{%

\column@\z@

\@tempdimb\z@

\@tempdimc\z@

\edef\@tempb{\fieldlengths@\row@}%

\@for\@tempa:=\@tempb\do{%

\advance\column@\@ne

\x@rcalc@width

}%

\begingroup

\advance\column@\m@ne

\divide\column@\tw@

\ifnum\@tempcntb>\column@

\advance\@tempcnta-\@tempcntb

\advance\@tempcnta\column@

\@tempcntb\column@

\fi

\tagwidth@\tag@width\row@\relax

\@tempdima\@tempdimc

17. MULTILINE EQUATION ENVIRONMENTS 77

\advance\@tempdima\tagwidth@

\dimen@\minalignsep\relax

\multiply\dimen@\@tempcntb

\advance\dimen@\mintagsep\relax

\ifnum\xatlevel@=\tw@ \else

\advance\dimen@\mintagsep\relax

\fi

\advance\dimen@\@tempdima

\ifdim\dimen@>\displaywidth

\saveshift@1%

\else

\saveshift@0%

\dimen@\eqnshift@

\advance\dimen@\@tempdima

\advance\dimen@\@tempcntb\alignsep@

\advance\dimen@\tagwidth@

\ifdim\dimen@>\displaywidth

\dimen@\displaywidth

\advance\dimen@-\@tempdima

\ifnum\xatlevel@=\tw@

\advance\dimen@-\mintagsep\relax

\fi

\divide\dimen@\@tempcnta

\ifdim\dimen@<\minalignsep\relax

\global\alignsep@\minalignsep\relax

\eqnshift@\displaywidth

\advance\eqnshift@-\@tempdima

\advance\eqnshift@-\@tempcntb\alignsep@

\global\divide\eqnshift@\tw@

\else

\ifdim\dimen@<\eqnshift@

\ifdim\dimen@<\z@

\global\eqnshift@\z@

\else

\global\eqnshift@\dimen@

\fi

\fi

\ifdim\dimen@<\alignsep@

\global\alignsep@\dimen@

\fi

\fi

\fi

\fi

\endgroup

}

\fi\fi

\x@rcalc@width

\iftagsleft@\else

\def\x@rcalc@width{%

78 THE AMSMATH PACKAGE

\ifdim\@tempa > \z@

\advance\@tempdimc\@tempdimb

\ifodd\column@

\advance\@tempdimc\maxcol@width\column@

\@tempdimb\z@

\else

\advance\@tempdimc\@tempa\relax

\@tempdimb\maxcol@width\column@

\advance\@tempdimb-\@tempa\relax

\fi

\else

\advance\@tempdimb\maxcol@width\column@\relax

\fi

}

\fi

Tag placement when \tagsleft@true, \@fleqnfalse.

\calc@shift@align

\iftagsleft@\if@fleqn\else

\def\calc@shift@align{%

\global\let\tag@shifts\@empty

\begingroup

\loop

\ifnum\row@>\z@

\ifdim\tag@width\row@>\z@

\x@calc@shift@lc

\else

\saveshift@0%

\fi

\advance\row@\m@ne

\repeat

\endgroup

}

\x@calc@shift@lc

\def\x@calc@shift@lc{%

\column@\z@

\@tempdima will (eventually) be set to the effective width of the current row,
defined as the distance from the leftmost point of the current line to the end
of the last field of the \halign, ignoring any intervening \tabskips, plus the
width of the current tag. That is, it will be the width of the first non-empty
field plus the sum of the maximum widths of all following fields, plus the tag
width.

\@tempdimb will be the “indentation” of leftmost end of text, ignoring the
\tabskip glue, i.e., it will be the sum of the maximum widths of any fields to
the left of the first non-empty field, plus whatever empty space there is at the
beginning of the first non-empty field.

17. MULTILINE EQUATION ENVIRONMENTS 79

\@tempdima\z@ % ‘‘width of equation’’

\@tempdimb\z@ % ‘‘indent of equation’’

\edef\@tempb{\fieldlengths@\row@}%

\@for\@tempa:=\@tempb\do{%

\advance\column@\@ne

\x@lcalc@width

}%

\begingroup

\tagwidth@\tag@width\row@\relax

\@tempdima is now easy to calculate, since it is just \totwidth@−\@tempdimb+
\tagwidth@.

\@tempdima\totwidth@

\advance\@tempdima-\@tempdimb

\advance\@tempdima\tagwidth@

Next, we check to see whether there is room for both the equation and the tag
on the same line, by calculating the minimum acceptable length of the current
row and comparing that to \displaywidth. Note that here we use \@tempcntb,
i.e., the number of interalign spaces after the first non-empty align structure.

\dimen@\minalignsep\relax

\multiply\dimen@\@tempcntb

\advance\dimen@\mintagsep\relax

\ifnum\xatlevel@=\tw@ \else

\advance\dimen@\mintagsep\relax

\fi

\advance\dimen@\@tempdima

If the minimum acceptable width of the current line is greater than \displaywidth,
we mark the current tag to be shifted to a separate line.

\ifdim\dimen@>\displaywidth

\saveshift@1%

\else

Otherwise, the tag can stay on the same line as the equation, but we need to
check whether it is too close to the equation. So, we calculate the distance
between the left margin and the left side of the equation, using the current
values of \eqnshift@ and \alignsep@. Note that we use \count@ here, not
\@tempcntb, as above.

\saveshift@0%

\dimen@\alignsep@

\multiply\dimen@\count@

\advance\dimen@\eqnshift@

\advance\dimen@\@tempdimb

If the left margin is less than twice the tag width, we calculate new values of
\eqnshift@ and \alignsep@ to move the equation further away from the tag.
In particular, we center the current line between its tag and the right margin.
Note that although we later will need to transform \dimen@ into a value suitable
for use as \eqnshift@, for the time being it is more useful to think of it as the
space separating the tag from the equation.

80 THE AMSMATH PACKAGE

\ifdim\dimen@<2\tagwidth@

\dimen@\displaywidth

\advance\dimen@-\@tempdima

\ifnum\xatlevel@=\tw@

\advance\dimen@-\mintagsep\relax

\fi

In certain circumstances we will get a divide-by-zero error here unless we guard
against it. Use of \@tempcnta is complicated, sometimes it is assigned globally,
sometimes locally. Need to sort it out one of these days [mjd,2000/06/02].

\ifnum\@tempcnta>\z@

\divide\dimen@\@tempcnta

\else \dimen@\z@

\fi

As usual, we check to make sure we don’t set \alignsep@ smaller than
\minalignsep and, in any case, that we don’t replace \alignsep@ by a larger
value.

\ifdim\dimen@<\minalignsep\relax

\global\alignsep@\minalignsep\relax

\dimen@\displaywidth

\advance\dimen@-\@tempdima

\advance\dimen@-\@tempcntb\alignsep@

\global\divide\dimen@\tw@

\else

\ifdim\dimen@<\alignsep@

\global\alignsep@\dimen@

\fi

\fi

Next, we calculate an appropriate value of \eqnshift@, assuming that \dimen@
is the desired separation between the tag and equation of the current line. This
means that we first need to adjust \dimen@ if we’re in an flalign environment.

\ifnum\xatlevel@=\tw@

\dimen@\mintagsep\relax

\fi

Now we calculate the value of \eqnshift@ needed to produce a separation of
\dimen@ between the equation tag and the beginning of the equation. To do
this, we need the following equation to hold:

\eqnshift@+ n\alignsep@+ \@tempdimb = \tagwidth@+ \dimen@

where n = \count@ is the number of interalign spaces before the first non-empty
field of the current line.

\advance\dimen@\tagwidth@

\advance\dimen@-\@tempdimb

\advance\dimen@-\count@\alignsep@

The value of \eqnshift@ just calculated is the minimum acceptable value; thus,
we save it only if it is larger than the current value.

17. MULTILINE EQUATION ENVIRONMENTS 81

\ifdim\dimen@>\eqnshift@

\global\eqnshift@\dimen@

\fi

\fi

\fi

\endgroup

}

\x@lcalc@width This macro calculates the “indentation” of the current row, as defined above
under the description of \x@calc@shift@lc. This macro is called for each field
of the current line, with \@tempa set to the width of the current field. Ideally,
the loop enclosing \x@lcalc@width would terminate as soon as \@tempa is non-
zero, but that would be a bit tricky to arrange. Instead, we use \@tempdima as
a flag to signal when we’ve encountered the first non-empty field.

\def\x@lcalc@width{%

\ifdim\@tempdima = \z@

If the current field is empty (i.e., \@tempa = 0pt, then we increment \@tempdimb
by the width of the current field). Otherwise, we set \@tempdima = 1pt as a
signal value and increment \@tempdimb by the width of whatever empty space
there might be at the left of the current field.

\ifdim\@tempa > \z@

\@tempdima\p@

\ifodd\column@

\advance\@tempdimb \maxcol@width\column@

\advance\@tempdimb-\@tempa

\fi

In addition, we need to adjust the values of \@tempcnta and \@tempcntb to
account for any empty align structures that might occur at the beginning of
the current line. More specifically, we first set \count@ equal to the number
of interalign spaces preceding the current field (namely, ⌊(\column@ − 1)/2⌋),
and then subtract \count@ from both \@tempcnta and \@tempcntb. The ratio-
nale is that for the purposes of adjusting the spacing between the tag and the
equation, the only flexible interalign spaces are those after the first non-empty
align structure, so we need to treat those different from the ones before the first
non-empty align structure.

\count@\column@

\advance\count@\m@ne

\divide\count@\tw@

\advance\@tempcnta-\count@

\advance\@tempcntb-\count@

\else

\advance\@tempdimb \maxcol@width\column@\relax

\fi

\fi

}

\fi\fi

82 THE AMSMATH PACKAGE

\place@tag \place@tag takes care of the placement of tags in the align environments.

\def\place@tag{%

\iftagsleft@

\kern-\tagshift@

\if1\shift@tag\row@\relax

\rlap{\vbox{%

\normalbaselines

\boxz@

\vbox to\lineht@{}%

\raise@tag

}}%

\else

\rlap{\boxz@}%

\fi

\kern\displaywidth@

\else

\kern-\tagshift@

\if1\shift@tag\row@\relax

Added depth to correct vertical spacing of shifted equation tags.—dmj, 1994/12/29

\llap{\vtop{%

\raise@tag

\normalbaselines

\setbox\@ne\null

\dp\@ne\lineht@

\box\@ne

\boxz@

}}%

\else

\llap{\boxz@}%

\fi

\fi

}

\align@preamble

\def\align@preamble{%

&\hfil

\strut@

\setboxz@h{\@lign$\m@th\displaystyle{##}$}%

\ifmeasuring@\savefieldlength@\fi

\set@field

\tabskip\z@skip

&\setboxz@h{\@lign$\m@th\displaystyle{{}##}$}%

\ifmeasuring@\savefieldlength@\fi

\set@field

\hfil

\tabskip\alignsep@

}

\set@field \set@field increments the column counter, tracks the value of \lineht@ and

17. MULTILINE EQUATION ENVIRONMENTS 83

finally inserts the box containing the contents of the current field.

\def\set@field{%

\column@plus

\iftagsleft@

\ifdim\ht\z@>\lineht@

\global\lineht@\ht\z@

\fi

\else

\ifdim\dp\z@>\lineht@

\global\lineht@\dp\z@

\fi

\fi

\boxz@

}

17.7 The split environment
\split@err A special error function for split to conserve main mem (at a cost of string

pool/hash size.

\edef\split@err#1{%

\@nx\@amsmath@err{%

\string\begin{split} won’t work here%

}{%

\@xp\@nx\csname

Did you forget a preceding \string\begin{equation}?^^J%

If not, perhaps the ‘aligned’ environment is what

you want.\endcsname}%

}

split (env.) If the split environment occurs inside align or gather, it can make use of
the enclosing halign; if it is called inside a simple equation, we add an implicit
‘gather’ container.

\newenvironment{split}{%

\if@display

\ifinner

\@xp\@xp\@xp\split@aligned

\else

\ifst@rred \else \global\@eqnswtrue \fi

\fi

\else \let\endsplit\@empty \@xp\collect@body\@xp\split@err

\fi

\collect@body\gather@split

}{%

\crcr

\egroup

\egroup

\iftagsleft@ \@xp\lendsplit@ \else \@xp\rendsplit@ \fi

}

\let\split@tag\relax % init

84 THE AMSMATH PACKAGE

\def\gather@split#1#2#3{%

\@xp\endgroup \reset@equation % math@cr will handle equation numbering

\iftag@

\toks@\@xp{\df@tag}%

\edef\split@tag{%

\gdef\@nx\df@tag{\the\toks@}%

\global\@nx\tag@true \@nx\nonumber

}%

\else \let\split@tag\@empty

\fi

\spread@equation

The extra vcenter wrapper here is not really a good thing but without it there are
compatibility problems with old documents that throw in some extra material
between \begin{equation} and \begin{split} (for example, \hspace{-1pc}
or \left\{). [mjd,1999/09/20]

\vcenter\bgroup

\gather@{\split@tag \begin{split}#1\end{split}}%

\def\endmathdisplay@a{%

\math@cr \black@ \totwidth@ \egroup

\egroup

}%

}

\insplit@

\def\insplit@{%

\global\setbox\z@\vbox\bgroup

\Let@ \chardef\dspbrk@context\@ne \restore@math@cr

\default@tag % disallow use of \tag here

\ialign\bgroup

\hfil

\strut@

$\m@th\displaystyle{##}$%

&$\m@th\displaystyle{{}##}$%

\hfill % Why not \hfil?---dmj, 1994/12/28

\crcr

}

\rendsplit@ Moved the box maneuvers inside the \ifinalign@, since that is the only place
they are needed.—dmj, 1994/12/28

TODO: Explore interaction of tag-placement algorithm with split. Is there
any way for split to pass the relevant information out to the enclosing gather

or align?

\def\rendsplit@{%

\ifinalign@

Changed \box9 into a \vtop here for better spacing.

\global\setbox9 \vtop{%

\unvcopy\z@

\global\setbox8 \lastbox

17. MULTILINE EQUATION ENVIRONMENTS 85

\unskip

}%

\setbox\@ne\hbox{%

\unhcopy8

\unskip

\global\setbox\tw@\lastbox

\unskip

\global\setbox\thr@@\lastbox

}%

\ifctagsplit@

\gdef\split@{%

\hbox to\wd\thr@@{}%

&\vcenter{\vbox{\moveleft\wd\thr@@\boxz@}}%

}%

\else

\global\setbox7 \hbox{\unhbox\tw@\unskip}%

Added \add@amps to make sure we put the last line of the split into the
proper column of an align environment with multiple align structures.—dmj,
1994/12/28

Special care has to be taken in this case because the split turns into two
lines of the align instead of just one. So, we have to make sure that the
first line produced by the split doesn’t upset our bookkeeping, hence we call
\savetaglength@ to insert 0 pt as the tag for this pseudo-line, and we advance
the \row@ counter and reset \lineht@ afterwards. It would be nice if we could
just replace the \crcr by \math@cr@@@, but that would cause problems with
the tag processing.

\gdef\split@{%

\global\@tempcnta\column@

&\setboxz@h{}%

\savetaglength@

\global\advance\row@\@ne

\vbox{\moveleft\wd\thr@@\box9}%

\crcr

\noalign{\global\lineht@\z@}%

\add@amps\@tempcnta

\box\thr@@

&\box7

}%

\fi

\else

\ifctagsplit@

\gdef\split@{\vcenter{\boxz@}}%

\else

Changed to just \boxz@, otherwise last line gets centered rather than aligned
properly with respect to the rest of the lines. But this means that we can’t see
inside of the last line to decide whether the tag needs to be moved. Will have
to think about this.—dmj, 1994/12/28

86 THE AMSMATH PACKAGE

\gdef\split@{%

\boxz@

% \box9

% \crcr

% \hbox{\box\thr@@\box7}%

}%

\fi

\fi

\aftergroup\split@

}

\lendsplit@

\def\lendsplit@{%

\global\setbox9\vtop{\unvcopy\z@}%

\ifinalign@

Moved following two boxes inside the \ifinalign@, since they are only used
in that case. In fact, if we just kept track of the width of the first column, we
could dispense with this entirely. Surely that would be more efficient than all
these box copies.—dmj, 1994/12/28

\setbox\@ne\vbox{%

\unvcopy\z@

\global\setbox8\lastbox

}%

\setbox\@ne\hbox{%

\unhcopy8%

\unskip

\setbox\tw@\lastbox

\unskip

\global\setbox\thr@@\lastbox

}%

\ifctagsplit@

\gdef\split@{%

\hbox to\wd\thr@@{}%

&\vcenter{\vbox{\moveleft\wd\thr@@\box9}}%

}%

\else

\gdef\split@{%

\hbox to\wd\thr@@{}%

&\vbox{\moveleft\wd\thr@@\box9}%

}%

\fi

\else

\ifctagsplit@

\gdef\split@{\vcenter{\box9}}%

\else

\gdef\split@{\box9}%

\fi

\fi

\aftergroup\split@

17. MULTILINE EQUATION ENVIRONMENTS 87

}

With amsmath 1.2 it was possible to put things like \left\{ between
\begin{equation} and \begin{split} without getting any error message. For
backward compatibility we try to avoid a fatal error in this case and instead
attempt recovery with aligned.

\def\split@aligned#1#2{%

\iffalse{\fi\ifnum0=‘}\fi

\collect@body\split@al@a}

\def\split@al@a#1#2#3{%

\split@warning

\endgroup

If the fleqn and tbtags options are both in effect then we will need to add an
optional argument on the aligned environment.

\toks@{\begin{aligned}}%

\if@fleqn \split@al@tagcheck \fi

The \relax here is to prevent \@let@token from being left equal to an amper-
sand if that happens to be the first thing in the body.

\the\toks@\relax#1\end{aligned}%

\ifnum0=‘{\fi\iffalse}\fi

}

\def\split@al@tagcheck{%

\ifctagsplit@

\else

\iftagsleft@ \toks@\@xp{\the\toks@ [t]}%

\else \toks@\@xp{\the\toks@ [b]}%

\fi

\fi

}

\def\split@warning{%

\PackageWarning{amsmath}{%

Cannot use ‘split’ here;\MessageBreak trying to recover with ‘aligned’}%

}

17.8 The multline environment
In the original AMS-TEX, \multlinegap is a macro with an argument that
resets an internal dimension (one with an @ character in its name). Here, to
save control sequence names, we define \multlinegap to be the dimension itself
and the documentation instructs users to use \setlength if they need to change
it.

\multlinegap

\multlinetaggap

Changed \multlinegap and \multlinetaggap to skip registers. Also changed
name to \multlinetaggap from \multlinetaggap@.

\newskip\multlinegap

\multlinegap10pt

\newskip\multlinetaggap

\multlinetaggap10pt

88 THE AMSMATH PACKAGE

\start@multline

\def\start@multline#1{%

\RIfM@

\nomath@env

\DN@{\@namedef{end\@currenvir}{}\@gobble}%

\else

\dollardollar@begin

#1%

\ifst@rred

\nonumber

\else

\global\@eqnswtrue

\fi

\let\next@\multline@

\fi

\collect@body\next@

}

multline (env.)

multline* (env.) \newenvironment{multline}{%

\start@multline\st@rredfalse

}{%

\iftagsleft@ \@xp\lendmultline@ \else \@xp\rendmultline@ \fi

\ignorespacesafterend

}

\newenvironment{multline*}{\start@multline\st@rredtrue}{\endmultline}

\multline@

\def\multline@#1{%

\Let@

For multline neither \displ@y no \displ@y@ is quite right; we want to
advance the row number and (I suppose?) the display-pagebreak level, but we
only want to do tag-related stuff once before the first line, not repeat it for every
line. (Recall that the arg of \@display@init goes into \everycr.)

\@display@init{\global\advance\row@\@ne \global\dspbrk@lvl\m@ne}%

\chardef\dspbrk@context\z@

\restore@math@cr

The multline environment is somewhat unusual, in that \tag and \label are
enabled only during the measuring phase and disabled during the production
phase. Here we disable \tag and \label; \mmeasure@ will re-enable them
temporarily.

\let\tag\tag@in@align

\global\tag@false \global\let\raise@tag\@empty

\mmeasure@{#1}%

\let\tag\gobble@tag \let\label\@gobble

\tabskip \if@fleqn \@mathmargin \else \z@skip \fi

\totwidth@\displaywidth

17. MULTILINE EQUATION ENVIRONMENTS 89

\if@fleqn

\advance\totwidth@-\@mathmargin

\fi

\halign\bgroup

\hbox to\totwidth@{%

In order to get the spacing of the last line right in fleqn mode, we need to
play a little game here. Normally the stretchability of the \hskip here will be
suppressed by the \hfil at the end of the template, except inside the last line,
when that \hfil will be removed by the \hfilneg in \lendmultline@.

\if@fleqn

\hskip \@centering \relax

\else

\hfil

\fi

\strut@

$\m@th\displaystyle{}##\endmultline@math

\hfil

}%

\crcr

In fleqn mode, it’s the \tabskip of \@mathmargin that needs to be removed
in the first line, not the \hfil at the beginning of the template.

\if@fleqn

\hskip-\@mathmargin

\def\multline@indent{\hskip\@mathmargin}% put it back

\else

\hfilneg

\def\multline@indent{\hskip\multlinegap}%

\fi

\iftagsleft@

\iftag@

\begingroup

\ifshifttag@

\rlap{\vbox{%

\normalbaselines

\hbox{%

\strut@

\make@display@tag

}%

\vbox to\lineht@{}%

\raise@tag

}}%

If the equation tag doesn’t fit on the same line with the first line of the display,
we’ll indent the first line by \multlinegap. This is a change from amstex,
where the first line would have been flush against the left margin in this case.
A corresponding change will be made in \rendmultline@.

\multline@indent

\else

90 THE AMSMATH PACKAGE

\setbox\z@\hbox{\make@display@tag}%

\dimen@\@mathmargin \advance\dimen@-\wd\z@

\ifdim\dimen@<\multlinetaggap

\dimen@\multlinetaggap

\fi

\box\z@ \hskip\dimen@\relax

\fi

\endgroup

\else

\multline@indent

\fi

\else

\multline@indent

\fi

#1%

}

An extra level of indirection for the closing $ in multline allows us to avoid
getting an extra thinmuskip from a final mathpunct in the equation contents,
when equation numbers are on the right. If we did not use this workaround, the
sequence of elements for a final comma would be, e.g.,

... ,<hskip><box containing equation number>

which is equivalent to a sequence <mathpunct><mathord> as far as the auto-
matic math spacing is concerned.

\def\endmultline@math{$}

\lendmultline@ Bug fix: changed \crcr to \math@cr so that \@eqpen gets reset properly if
\displaybreak is used on the penultimate line of an align.

\def\lendmultline@{%

\hfilneg

\hskip\multlinegap

\math@cr

\egroup

\dollardollar@end

}

\rendmultline@

\def\rendmultline@{%

\iftag@

$\let\endmultline@math\relax

\ifshifttag@

\hskip\multlinegap

Added depth to correct vertical spacing of shifted equation tags.—dmj, 1994/12/29

\llap{\vtop{%

\raise@tag

\normalbaselines

17. MULTILINE EQUATION ENVIRONMENTS 91

\setbox\@ne\null

\dp\@ne\lineht@

\box\@ne

\hbox{\strut@\make@display@tag}%

}}%

\else

\hskip\multlinetaggap

\make@display@tag

\fi

\else

\hskip\multlinegap

\fi

\hfilneg

Use \math@cr rather than just \crcr so that \@eqpen gets reset properly if
\displaybreak is used.

\math@cr

\egroup\dollardollar@end

}

\mmeasure@

\def\mmeasure@#1{%

\begingroup

\measuring@true

We use \begin/endgroup rather than {} in this definition of \label because
the latter would create an extra (wasteful of main mem) null box in the current
math list. [mjd, 1995/01/17]

\def\label##1{%

\begingroup\measuring@false\label@in@display{##1}\endgroup}%

\def\math@cr@@@{\cr}%

\let\shoveleft\@iden \let\shoveright\@iden

\savecounters@

\global\row@\z@

\setbox\@ne\vbox{%

\global\let\df@tag\@empty

\halign{%

\setboxz@h{\@lign$\m@th\displaystyle{}##$}%

\iftagsleft@

\ifnum\row@=\@ne

\global\totwidth@\wdz@

\global\lineht@\ht\z@

\fi

\else

\global\totwidth@\wdz@

\global\lineht@\dp\z@

\fi

\crcr

#1%

\crcr

92 THE AMSMATH PACKAGE

}%

}%

\ifx\df@tag\@empty\else\global\tag@true\fi

\if@eqnsw\global\tag@true\fi

\iftag@

\setboxz@h{%

\if@eqnsw

\stepcounter{equation}%

\tagform@\theequation

\else

\df@tag

\fi

}%

\global\tagwidth@\wdz@

\dimen@\totwidth@

\advance\dimen@\tagwidth@

\advance\dimen@\multlinetaggap

\iftagsleft@\else

\if@fleqn

\advance\dimen@\@mathmargin

\fi

\fi

\ifdim\dimen@>\displaywidth

\global\shifttag@true

\else

\global\shifttag@false

\fi

\fi

\restorecounters@

\endgroup

}

\shoveleft

\shoveright

\shoveleft and \shoveright need to do slightly different things depending
on whether tags are on the left or the right and whether we’re in fleqn mode.
For compactness of code, we make the appropriate decisions at “compile” time
rather than at load time.

TODO: Investigate making \shoveright behave “properly”(?) if used on
the first line of a multline and make \shoveleft behave properly if used on
the last line of a multline. But in his amstex.doc Spivak indicates those
commands should never be used on a first or last line. Perhaps better to leave
the question open unless/until real-life examples turn up.

\iftagsleft@

\protected\def\shoveright#1{%

#1%

\hfilneg

\hskip\multlinegap

}

\else

\protected\def\shoveright#1{%

17. MULTILINE EQUATION ENVIRONMENTS 93

#1%

\hfilneg

\iftag@

\ifshifttag@

\hskip\multlinegap

\else

\hskip\tagwidth@

\hskip\multlinetaggap

\fi

\else

\hskip\multlinegap

\fi

}

\fi

\if@fleqn

\def\shoveleft#1{#1}%

\else

\iftagsleft@

\protected\def\shoveleft#1{%

\setboxz@h{$\m@th\displaystyle{}#1$}%

\setbox\@ne\hbox{$\m@th\displaystyle#1$}%

\hfilneg

\iftag@

\ifshifttag@

\hskip\multlinegap

\else

\hskip\tagwidth@

\hskip\multlinetaggap

\fi

\else

\hskip\multlinegap

\fi

\hskip.5\wd\@ne

\hskip-.5\wdz@ \relax

#1%

}

\else

\protected\def\shoveleft#1{%

\setboxz@h{$\m@th\displaystyle{}#1$}%

\setbox\@ne\hbox{$\m@th\displaystyle#1$}%

\hfilneg

\hskip\multlinegap

\hskip.5\wd\@ne

\hskip-.5\wdz@ \relax

#1%

}

\fi

\fi

94 THE AMSMATH PACKAGE

17.9 The equation environment
Rewritten from the ground up for version 2.0 to fix no-shrink and no-shortskips
bugs [mjd,2000/01/06].

Standard LATEX provides three environments for one-line equations: \[

\], equation, and displaymath. We add equation* as a synonym for
displaymath.

\let\@@eqno\eqno

\let\@@leqno\leqno

\def\eqno{\@@eqno\let\eqno\relax\let\leqno\relax}

\def\leqno{\@@leqno\let\leqno\relax\let\eqno\relax}

%

\let\veqno=\@@eqno

\iftagsleft@ \let\veqno=\@@leqno \fi

Support for the showkeys package: provide no-op definitions for a couple
of SK functions, if they are not already defined. Then we can just call them
directly in our code without any extra fuss. If the showkeys package is loaded
later, our trivial definitions will get overridden and everything works fine.

\@ifundefined{SK@@label}{%

\let\SK@@label\relax \let\SK@equationtrue\relax

}{}

\let\reset@equation\@empty

Cf \tag@in@align. This is a bit of a mess though. Could use some work.
[mjd,1999/12/21]

\let\alt@tag\@empty

\def\tag@in@display#1#{\relax\tag@in@display@a{#1}}

\def\tag@in@display@a#1#2{%

\iftag@

\invalid@tag{Multiple \string\tag}\relax

\else

\global\tag@true \nonumber \reset@equation \st@rredtrue

\if *\string#1%

\gdef\alt@tag{\def\SK@tagform@{#2\@gobble}%

\ifx\SK@@label\relax \let\tagform@\SK@tagform@ \fi

}%

\make@df@tag@@{#2}%

\else

\make@df@tag@@@{#2}%

\fi

\fi

}

\let\restore@hfuzz\@empty

\def\mathdisplay#1{%

\ifmmode \@badmath

\else

\dollardollar@begin\def\@currenvir{#1}%

17. MULTILINE EQUATION ENVIRONMENTS 95

Allow use of \displaybreak.

\let\dspbrk@context\z@

Although in some cases simpler label handling would seem to be sufficient, al-
ways using \label@in@display makes it easier to support the showkeys pack-
age.

\let\tag\tag@in@display \let\label\label@in@display \SK@equationtrue

\global\let\df@label\@empty \global\let\df@tag\@empty

\global\tag@false

\let\mathdisplay@push\mathdisplay@@push

\let\mathdisplay@pop\mathdisplay@@pop

\if@fleqn

Turn off overfull box messages temporarily—otherwise there would be unwanted
extra ones emitted during our measuring operations.

\edef\restore@hfuzz{\hfuzz\the\hfuzz\relax}%

\hfuzz\maxdimen

Initially set the equation body in a box of displaywidth. Then if the box is not
overfull, as we find by checking \badness, we have acquired useful information
for the subsequent processing.

\setbox\z@\hbox to\displaywidth\bgroup

\let\split@warning\relax \restore@hfuzz

\everymath\@emptytoks \m@th $\displaystyle

\fi

\fi

}

Arg 1 is not currently used. I thought it might come in handy for error
messages.

\def\endmathdisplay#1{%

\ifmmode \else \@badmath \fi

\endmathdisplay@a

\dollardollar@end

I guess the following code means this structure is non-reentrant. But there
is plenty of scope for tricky bugs here; suppressing them by brute force
at least makes it possible to get things working correctly for normal use.
[mjd,2000/01/06]

\global\let\df@label\@empty \global\let\df@tag\@empty

\global\tag@false \global\let\alt@tag\@empty

\global\@eqnswfalse

}

\def\endmathdisplay@a{%

\if@eqnsw \gdef\df@tag{\tagform@\theequation}\fi

\if@fleqn \@xp\endmathdisplay@fleqn

\else \ifx\df@tag\@empty \else \veqno \alt@tag \df@tag \fi

\ifx\df@label\@empty \else \@xp\ltx@label\@xp{\df@label}\fi

\fi

\ifnum\dspbrk@lvl>\m@ne

96 THE AMSMATH PACKAGE

\postdisplaypenalty -\@getpen\dspbrk@lvl

\global\dspbrk@lvl\m@ne

\fi

}

A boolean variable: Was that last box overfull or not? A value of 0 means
yes, it was overfull.

\let\too@wide\@ne

Special handling is needed for flush-left equations. We need to measure
the equation body (found in box 0 after we close it with the \egroup). Then
after a fairly normal test to see if it fits within the available space, we need to
consider overlapping into the displayindent area if displayindent is nonzero (as
in an indented list). If there is an equation number we may have to shift it by
hand to a separate line when there is not enough room; we can no longer take
advantage of the automatic shifting provided by the \leqno, \eqno primitives.

We initially add \@mathmargin glue at the end of box 0 to get an accurate
overfull test. If \@mathmargin contains any shrink then we cannot reliably tell
whether the box will be overfull or not simply by doing hand calculations from
the actual width of the equation body. We have to actually set the box and find
out what happens.

On the other hand if we put the \@mathmargin glue at the beginning of the
box it’s awkward to remove it afterwards. So we first put it in at the end and
later we will move it to the beginning as needed.

\def\endmathdisplay@fleqn{%

$\hfil\hskip\@mathmargin\egroup

We need to save the information about whether box 0 was overfull in a variable,
otherwise it will disappear in the next setbox operation. And we couldn’t set
the equation number box earlier than now, because the body of the equation
might have contained a \tag command (well, it could have been done, but this
way we can reuse the tag-handling code from elsewhere).

\ifnum\badness<\inf@bad \let\too@wide\@ne \else \let\too@wide\z@ \fi

\ifx\@empty\df@tag

\else

\setbox4\hbox{%

If \qedhere was used we need to output it (stored strangely enough in \alt@tag.

\alt@tag

\df@tag

\ifx\df@label\@empty \else \@xp\ltx@label\@xp{\df@label}\fi

}%

\fi

\csname emdf@%

\ifx\df@tag\@empty U\else \iftagsleft@ L\else R\fi\fi

\endcsname

}

17. MULTILINE EQUATION ENVIRONMENTS 97

For an unnumbered flush-left equation we hope first that the the contents fit
within displaywidth. If not we need to fall back on a more complicated reboxing
operation.

\def\emdf@U{%

\restore@hfuzz

\ifodd\too@wide % not too wide: just need to swap the glue around

\hbox to\displaywidth{\hskip\@mathmargin\unhbox\z@\unskip}%

\else % M+B > displaywidth

\emdf@Ua

\fi

}

Some notation: M \@mathmargin, B the width of the equation body, I
\displayindent, D \displaywidth, N the width of the equation number (aka
the tag), S \mintagsep, C \columnwidth. If M +B > displaywidth, and if we
assume M contains shrink, then the only solution left is to encroach into the
displayindent space.

\def\emdf@Ua{%

\hbox to\columnwidth{%

\ifdim\displayindent>\z@

\hskip\displayindent minus\displayindent

\fi

\hskip\@mathmargin \unhbox\z@ \unskip

}%

\displayindent\z@ \displaywidth\columnwidth

}

Find out first if the tag fits in ideal position. If so we can just plunk down
box 2. Otherwise we need to do something more complicated.

\def\emdf@R{%

\setbox\tw@\hbox to\displaywidth{%

\hskip\@mathmargin \unhcopy\z@\unskip\hfil\hskip\mintagsep\copy4

}%

\restore@hfuzz

\ifnum\badness<\inf@bad \box\tw@ \else \emdf@Ra \fi

}

We shift the equation number to line 2 if it does not fit within \displaywidth.
Note that we do not first attempt to let the equation body shift leftward into
the \displayindent space. If that is desired it will have to be done by hand
by adding negative space at the beginning of the equation body. I don’t expect
this to arise very often in practice since most of the time \displayindent is
zero anyway.

\def\emdf@Ra{%

\skip@\displayindent minus\displayindent

\displayindent\z@ \displaywidth\columnwidth

\spread@equation \everycr{}\tabskip\z@skip

\halign{\hbox to\displaywidth{##}\cr

\relax

\ifdim\skip@>\z@ \hskip\skip@ \fi

98 THE AMSMATH PACKAGE

\hskip\@mathmargin\unhbox\z@\unskip\hfil\cr

\noalign{\raise@tag}%

\hfil\box4 \cr}%

}

Find out first if the tag fits in ideal position. If so we can just plunk down
box 2. Otherwise we need to do something more complicated.

\def\emdf@L{%

Calculate the difference between M and N + S. If the latter is greater, we
don’t want to add any extra glue between the number and the equation body.
Otherwise the amount that we want to add is x minus x where x = M−(N+S).
I.e., the distribution of spaces across the line is N,S, xminusx,B, hfil.

\@tempdima\@mathmargin

\advance\@tempdima-\wd4 \advance\@tempdima-\mintagsep

\skip@\@tempdima minus\@tempdima

\setbox\tw@\hbox to\displaywidth{%

\copy4\hskip\mintagsep

\ifdim\skip@>\z@ \hskip\skip@\fi

\unhcopy\z@\unskip

}%

\restore@hfuzz

\ifnum\badness<\inf@bad \box\tw@ \else \emdf@La \fi

}

If the equation body and equation number will not fit on the same line, we
put the number on line 1 and the body on line 2, with the body positioned as
for an unnumbered equation.

\def\emdf@La{%

\spread@equation \everycr{}\tabskip\z@skip

\halign{\hbox to\displaywidth{##}\cr

\box4 \hfil \cr

\noalign{\raise@tag}%

\hskip\@mathmargin\unhbox\z@\unskip\hfil\cr}%

}

If someone has \[\] nested inside a minipage environment nested inside
a numbered equation, the mathdisplay variables that are global will get out of
whack unless we take extra care. So we make a stack and push all the variables
before entering mathdisplay and pop them afterwards. But we can save a little
work by not doing this at the top level, only at inner levels.

\newtoks\mathdisplay@stack

\let\mathdisplay@push\@empty

\def\mathdisplay@@push{%

\begingroup

\toks@\@xp{\df@label}\@temptokena\@xp{\df@tag}%

\toks8\@xp{\alt@tag}%

\edef\@tempa{%

\global\if@eqnsw\@nx\@eqnswtrue\else\@nx\@eqnswfalse\fi

\global\iftag@\@nx\tag@false\else\@nx\tag@true\fi

17. MULTILINE EQUATION ENVIRONMENTS 99

\gdef\@nx\df@label{\the\toks@}\gdef\@nx\df@tag{\the\@temptokena}%

\gdef\@nx\alt@tag{\the\toks8}%

\global\mathdisplay@stack{\the\mathdisplay@stack}%

}%

\global\mathdisplay@stack\@xp{\@tempa}

\endgroup

}

\let\mathdisplay@pop\@empty

\def\mathdisplay@@pop{\the\mathdisplay@stack}

As with hyperref incrementing the counter creates a box to raise the anchor it
should be in a place where is doesn’t affect spacing. Currently the code from
hyperref is used to avoid this problem: If fleqn isn’t active the counter is set
inside the equation and the potential box guarded by a mathopen to avoid side
effects on following unary symbols. If fleqn is activated it has to be outside to
avoid problems with labels. This solution is temporary and not necessarily the
best.

\if@fleqn

\renewenvironment{equation}{%

\incr@eqnum

\mathdisplay@push

\st@rredfalse \global\@eqnswtrue

\mathdisplay{equation}%

}{%

\endmathdisplay{equation}%

\mathdisplay@pop

\ignorespacesafterend

}

\else

\renewenvironment{equation}{%

\mathdisplay@push

\st@rredfalse \global\@eqnswtrue

\mathdisplay{equation}%

\incr@eqnum\mathopen{}%

}{%

\endmathdisplay{equation}%

\mathdisplay@pop

\ignorespacesafterend

}

\fi

\newenvironment{equation*}{%

\mathdisplay@push

\st@rredtrue \global\@eqnswfalse

\mathdisplay{equation*}%

}{%

\endmathdisplay{equation*}%

\mathdisplay@pop

\ignorespacesafterend

}

100 THE AMSMATH PACKAGE

Note: LATEX defines the displaymath environment in terms of \[and \].

\DeclareRobustCommand{\[}{\begin{equation*}}

\DeclareRobustCommand{\]}{\end{equation*}}

The usual \endinput to ensure that random garbage at the end of the file
doesn’t get copied by docstrip.

\endinput

18 Credits
Much of the code for the amsmath package had its origin in amstex.tex, written
by Michael Spivak. The initial work of porting amstex.tex to amstex.sty was
done in 1988–1989 by Frank Mittelbach and Rainer Schöpf. In 1994 David M.
Jones added the support for the fleqn option and did extensive improvements
to the align[at] family of environments and to the equation number handling
in general. Michael Downes at the AMS served as coordinator for the efforts
of Mittelbach, Schöpf, and Jones, and has contributed various bug fixes and
additional refinements over time.

Versions 1.0 and 1.1 of the package carried the name amstex instead of
amsmath, to indicate its origins; the name was changed in 1994 to make it user-
oriented rather than history-oriented.

	1 Introduction
	2 Catcode defenses
	3 Declare some options
	4 Flush-left equations [DMJ]
	5 Spacing around \aligned and \gathered
	6 Call some other packages
	7 Miscellaneous
	7.1 Math spacing commands
	7.2 Vertical bar symbols
	7.3 Fractions
	7.4 Sums and Integrals
	7.5 Roots and radicals
	7.6 Et cetera

	8 Ellipsis dots
	9 Integral signs
	10 Size dependent definitions
	10.1 Struts for math
	10.2 Big delimiters

	11 Math accents
	12 Mods, continued fractions, etc.
	13 Extensible arrows
	14 Array-related environments
	14.1 Remarks
	14.2 The subarray environment and \substack command
	14.3 Matrices

	15 Equation sub-numbering
	16 Equation numbering
	16.1 Preliminary macros
	16.2 Implementing tags and labels

	17 Multiline equation environments
	17.1 Remarks
	17.2 Preliminaries
	17.3 Scanning the environment's body
	17.4 Simple aligning environments
	17.5 The gather environment
	17.6 The align family of environments
	17.7 The split environment
	17.8 The multline environment
	17.9 The equation environment

	18 Credits

