Version 0.2

PDFT

ari.feiglin@gmail.com

PDFT offers a variety of tools for creating documents in plain TEX. These include packages for struc-
turing documents, coloring documents, etc. PDFT is a collection of packages intended to be used with
plain TEX. It is intended to be self-contained and does not promise compatibility with other packages.

PDFT is still experimental and may be subject to breaking changes. If you have an important
document relying on it, the author advises keeping

r

PDFT is known to not interact with the color, xcolor, tikz and all related packages. This may
or may not be changed in the future.

This documentation is split into sections corresponding to the different collections in PDFT . These
are:

(1) Data manipulation: counters, dictionaries, etc.
(2) Document structure: layouts, table of contents, indices, etc.

(3) Graphics: colors, diagrams, colored boxes, etc.

PDFT depends only on the package.
PDFT is provided as opensource free software under the MIT license.

Contents
1 pdfToolbox Versions 1
1.1 pdfToolbox V0.1 . e 1
111 Known Bugs ... 1
1.2 pdfTo0IDoX V0.2 ...ttt e e 1
1.2.1 What's NewW ? .ottt ettt e e e e e et e e e e 1
1.2.2 What’s Broken 1
I pdfToolbox in brief 1
1 pdfData 2
I 2 3
111 NOrmal ATTAYS . ..ottt ettt et et e e e e e e e e e 3
1.1.2 MACTO ATTAYS ..ottt ettt ettt e et e e e e e e e e e e 3
I 1 72 < 4
1.2.1 Normal Stacks e e 4
1.2.2 Macro StACKS ... 4
1.3 Localization 4
R0 101§) = AP 5
1.5 DICEIONATIESottt ettt ettt e et e e e 5
1.6 VLADDITIZS « ot ettt ettt ettt e e e e e e e e e e e e e e 6
2 pdfDstruct 6
D22 N 07 £ 1 6
2.2 HyperlinKks 6
2.3 BOmbS o o 7

2.4 HOOKS ottt 8

https://ctan.org/pkg/apnum?lang=en

\,

2.0 INAICES oot
2.0 LSt ottt
2.7 Table of Contents e

3 pdfGraphics
S 0 570 1o) <
3.2 C0lOrDOXES oottt
3.3 THUSETating e
3.4 LSTIIIES .« oot ettt

ITI pdfToolbox internals

1 Utilities
1.1 Simple MACTOS . ..ottt et et e et e et e e

I 1 1)
1.3 Repeating MacCToSt e et et e

2 pdfData Internals
2.1 MaAPDITIES - v vttt ettt e e e e e e e e e
3 pdfGraphics Internals

Bl C0J0rS ettt e e e e
3.2 C0l0TDOXES et e e e e
3.2.1 The MechaniSm o et
3.3 THUSErating
3.4 LSTIIIES .« oot ettt
3.4.1 The MechaniSm o ettt
342 USAZE « oottt
3.4.3 An EXample ...
3.4.4 Changing the OUutput e

IIT Acknowledgments

.9
10

10
11
11
12

13

14
15
15
15

16
16
17

17
17
18
21
21
21
22
23
25

26

pdfToolboz in brief 1

1 pdfToolbox Versions
1.1 pdfToolbox v0.1

First version of PDFTOOLBOX.

1.1.1 Known Bugs

e \url inserts invalid characters into the PDF. Some readers can still read the PDF, others won’t. Fixed in
version 0.2,

1.2 pdfToolbox v0.2

Bug fixes and added features.
1.2.1 What’s New?

e Fixed bug caused \url to create malformed PDF files.
e Added listings.

e Changed the method of creating section headers, and their corresponding toc line (see [)], more work is now
done by \settocdepthformat| and Naddtoccontent]. (This is also a breaking change.)

1.2.2 What’s Broken

pDFTooLBOX v0.2 adds breaking changes to the toolbox. These changes will render files created with previous
versions un-compilable.

e \linkborder no longer wraps its ouput in attr {...}, which is necessary for anchors; now _gotoanchor
adds this wrapping.

e _splitcontentbox now requires more arguments which allows for more customization (for more infor-
mation, see _splitcontentbox]).

e Changed the method of creating section headers, and their corresponding toc line (see the section on Eabled
[of contentl), more work is now done by \settocdepthformat| and Naddtoccontent!.

2 pdfData

I. PDFTOOLBOX IN BRIEF

pdfData 3

1 pdfData

The pdfData section of the PDFToOLBOX toolbox is meant for creating instances of and manipulating datatypes.
1.1 Arrays

In the pdfData/arrays file, PDFToOLBOX defines various macros for creating and manipulating arrays. There
are two types of arrays, which are different in the macros used for them and the way they are stored internally.

e (Normal) arrays: these arrays are stored in the traditional way: an array [1;2; 3] is stored in a macro whose
meaning is equivalent to \X{1}\X{2}\X{3}. Manipulation of the array is done by defining \X, and then
executing the array macro.

e Macro arrays: these arrays are stored in a collection of macros: each element is stored in its own indexed
macro. So an array [1;2; 3] will be stored in three macros, whose values are 1, 2, 3 respectively.

[AH arrays are zero-indexed.]

1.1.1 Normal Arrays

\createarray {(name)}: creates an (normal) array whose name is name.
\ensurearray {(name)}: ensures that an array by the name of name exists.
\localizearray {(name)}: localizes (see lacalizafionl) the array named by name.

\appendarray {(name)}{(value)}: appends value to the end of the array array named by name. value is
inserted according to Ncurrdef].

\prependarray {(name)}{{value)}: prepends value to the end of the array array named by name. wvalue is
inserted according to Ncurrdef].

\appendarraymany {(name)}{(valuel)}{(value2)}. .. .{(valueN)}}: appends valuel through valueN to the end
of the array array named by name. Each value is inserted according to Ncurrdef].

\arraylen {(name)}: expands to the length of the array specified by name.
\getarraylen {(name)}(macro): inserts the length of the array specified by name into the macro macro.

\arraymap {(name)}(macro): if the array specified by name is equivalent to [x0;...;xN] then doing \ar-
raymap{name}\X will execute \X{x1}{0}.. . \X{xNH{N}.

\indexarray {({name)}{(i)}{macro): Puts the ith element in the array specified by name into the macro macro.

\removearray {(name)}{(i)}(macro): Removes the ith element in the array specified by name and places it
into the macro macro.

\removeitemarray {(name)}{(value)}: Removes all instances of value from the array specifed by name (com-
parison is done using \ifx on macros containing value and the current index).

\printarray {(name)}: Prints the array specified by name.
\copyarray {(src)}{(dest)}: Copies the array src into dest.

\concatenatearrays {(arrl)}{{arr2)}{(dest)}: Concatenates the arrays arr! and arr2 and places the result
into a new array dest.

\initarray {(name)}{{(x1),...,{zN)}: Creates a new array by the name of name equivalent to [x1;...;xN].

\findarray {(name)}{(value)}: Checks if the value value exists in the array name (checking is done via \ifx).
If the value exists, the value \True is placed into \@return@value, otherwise it is equal to \False.

\uniqueappendarray {(name)}{(value)}: Appends value to the array name only if it does not already exist in
name (\@return@value is set accordingly).

\convertarray {(src)}{(dest)}: Converts a normal array src to a macro array dest.

4 pdfData
\mergesort {(src)}{(dest)}: Sorts the array src and places the result in dest.

1.1.2 Macro Arrays

\createmarray {(name)}: Creates a macro array by the name of name.

\localizemarray {(name)}: Localizes (see [ocalizafion]) the macro array specified by name.

\appendmarray {(name)}{{value)}: Appends value to the macro array specified by name.

\printmarray {(name)}: Prints the macro array specifed by name.

\convertmarray {(src)}{(dest)}: Converts the macro array src into a normal array dest.

\copymarray {(src)}{{dest)}: Copies the macro array src into dest.

\initmarray {(name)}{(zI),...,{zN)}: Creates a macro array name whose value is equivalent to [x1,...,xN].

\findmarray {(name)}{(value)}(macro): Searches for value in the macro array name. If found, sets \Q@re-
turn@value to \True and macro to the index where value was found. Otherwise \@return@value is set
to \False.

1.2 Stacks

In the pdfData/stacks. tex file, PDFTOOLBOX offers macros for creating and manipulating stack data structures.
There are two types of stacks, which differ in how they store their data. They are generally used for different
purposes:

e Normal stacks: these are normal stacks which store just the values given.

e Macro stacks: these stacks are meant to store only macros: they store both the definition and name of the
macro.

1.2.1 Normal Stacks

\createstack {(name)}: Creates a normal stack by the name of name.

\stackpush {(name)}{{value)}: Pushes the value value onto the stack specified by name.
\stackdecrement {(name)}: Pops from the top of the stack specified by name (deleting the value).
\stackpop {(name)}(macro): Pops from the top of the stack specified by name into macro.

\stacktop {(name)}(macro): Places the top of the stack specified by name into the macro macro without
popping.

1.2.2 Macro Stacks

Macro stacks store macros, as opposed to values. When pushing a macro \X onto the stack, not only is the
meaning of \X stored, but so is its name.

\createmacrostack {(name)}: Creates a macro stack by the name of name.
\macrostackpush {(name)}{macro): Pushes the macro macro onto the macro stack specified by name.
\macrostackdecrement {({name)}: Pops from the top of the macro stack specified by name (deleting the value).

\macrostackset {(name)}: If the top of the macro stack specified by name has name \X and value value, sets
\X to value.

\macrostackpop {(name)}: Pops from the top of the macro stack specified by name (same as \macrostackset,
but also pops the value off of the stack).

\macrostackpeek {(name)}({macrol)(macro2): If the top of the macro stack specified by name is (\X, value),
then \X is placed into macrol, and value into macro2.

pdfData 5

1.3 Localization

Using macro stacks, pPDFToorBox allows for localization. This gives the user the ability to create block scopes
(as opposed to just plain-ol‘ TEX groups). The usage is simple and as follows:

(1) The user enters a scope using \beginscope.
(2) The user localizes a macro \X by doing \localize\X.

(38) The user exits the scope using \endscope. Once the scope is exited, the previous definition of localized
macros is restored.

So for example,

1 \def\X{0}
2 \beginscope

3 \localize\X
4 \def\X{1}
5 \X
6 \beginscope
7 \def\Xx{2}
8 \X
9 \endscope
10 \X
11 \endscope
12 \X

Will output 1 2 2 0. As opposed to

1 \def\X{0}

2 \bgroup
3 \def\X{1}
4 \X
5 \bgroup
6 \def\X{2}
7 \X
8 \egroup
9 \X
10 \egroup
11 \X

Which will output 12 1 0.
1.4 Counters

In the pdfData/counters.tex, PDFToOOLBOX implements counters. Counters are simple wrappers over plain-
TEX counters. They hold integer values, are mutable, and can be made dependent on one another so that when
one is altered another is set to zero.

\createcounter {(name)}[{ci),...,(cN)]: Creates a counter by the name name dependent on counters
cl,...,cN.

\adddependentcounter {(secondary)}{(primary)}: Makes the secondary counter dependent on the primary
one; whenever primary is (non-independently; see e.g. \seticounterl) altered, secondary is set to zero.

\zerodependents {(primary)}: Sets to zero all counters dependent on primary.
\setcounter {(counter)}{{amount)}: Sets counter to amount (zeroing all counters dependent on counter).

\advancecounter {(counter)}{{amount)}: Advances counter by amount (zeroing all counters dependent on
counter).

\seticounter {(counter)}{(amount)}: Sets counter to amount (without zeroing all counters dependent on
counter).

\advanceicounter {{counter)}{(amount)}: Advances counter by amount (without zeroing all counters depen-
dent on counter).

\counter {(name)}: Returns the TEX counter corresponding to the PDFTooLBOX counter name. Useful for
example when printing the value of a counter: simply do \the\counter{name}.

6 pdfDstruct

1.5 Dictionaries

In the pdfData/dictionaries.tex file, PDFTOOLBOX implements dictionaries (also colloquially known as
“hashmaps” or “maps”). These are simple maps between keys and values.

\createdict {(name)}: Creates a dictionary by the name name.

\adddict {(name)}{(key)}{{value)}: Adds the (key : value) key-value pair to the dictionary specified by name.
\indexdict {(name)}{({key)}: Expands to the value of key in the dictionary name.

\keyindict {(name)}{(key)}: Sets \@return@value according to if key is found in the dictionary name.

1.6 Mappings

In pdfData/key-value.tex, PDFToOLBOX implements the ability to pass key-value parameters to macros.

\mapkeys {({options)}H (input)}: Maps the key-value pairs given in input according to options. options is itself
a set of key-value pairs, where the value of each key is an array which may contain:

e name (required): the name of the macro to give the value of the key;
e required: added if the key is required;
e definition: what definition macro to use for defining the value (e.g. \def, \edef);

e mapping: how to map the input to the value: the input is defined relative to definition into a
macro wrapped with mapping;

e default: the default value of the key.

Or the value may be empty (no array), which means it is valueless and acts as a boolean flag.

So for example, you may have a macro defined like so:

1 \def\puthi#i{Hello (#1)}

2

3 \def\getinput#1{/,

4 \mapkeys{

5 first={

6 name=fst,

7 required,

8 definition=\edef,
9 mapping=\puthi’,
10 Ig

11 second={

12 name=snd,

13 default=A. FeiglinJ,
14 Y

15 H#1},

16 }

17
18 \getinput{first=pdftoolbox}
19 (\fst) (\snd)

This will output (Hello (pdftoolbox)) (A. Feiglin).

\keyexists {(key)}(macro)\lastkeys: This is an internal command, added to this documentation only due
to its usefulness. Given a key name key, this macro checks if it exists in the map corresponding to the
last call to \mapkeys (the macro itself is more versatile, but we restrict it to this case). If the key does
not exist, then macro is set to _nul. This is useful with valueless keys.

\mapkeys is a bit finnicky when it comes to spaces and commas, but the rule is simple: place a comment at
the end of each list. That means that within each key’s array, you must place a comment at the end (otherwise
an extraneous space is added to the value), and after the last key’s array you must place a comment.

2 pdfDstruct

The pdfDstruct section of the PDFTooLBOX toolbox is for managing the structure of your documents.

pdfDstruct 7

2.1 Layout

In pdfDstruct/layout.tex, PDFTOOLBOX provides a macro \setlayout for setting up the layout of the doc-
ument. The use is
\setlayout {[page width=(wd),] [page height=(ht),] [horizontal margin=(mwd),]
[vertical margin=(vwd)l}

2.2 Hyperlinks

In pdfDstruct/hyperlinks.tex, PDFTOOLBOX provides macros for creating and managing hyperlinks.

\anchor [{type)]{(name)}: Creates an anchor (a reference, if you will) to the current point in the document.

\gotoanchor [(type)l{({name)}{(material)}: Creates a clickable field containing material which, when clicked,
will go to the anchor labeled with the type type and name name.

\url {(url)}{(material)}: Creates a clickable field containing material which, when clicked, will redirect to the
url url.

\createbordertype {(type)}{(color)}{{wd)}: Sets the border type of anchor type type to be of color color and
width wd. Urls have border type url. If a type doesn’t have a specified border type, the default one is
used.

2.3 Fonts

In pdfDstruct/fonts.tex, PDFTOOLBOX provides macros for accessing and controlling fonts.

\addfont {(name)}{(sizes)}: This will add a font by the name name so that it is accessible by PDFToOLBOX.
sizes is a key-value dictionary which specifies the font codes for different sizes of the font. For example,
in pdfDstruct/fonts.tex is the usage:

\addfont{rm}{/
default=cmri0,
5pt=cmr5,
6pt=cmr6,
Tpt=cmr7,
8pt=cmr8,
9pt=cmr9,
10pt=cmr10,
12pt=cmri2,

10 17pt=cmr17

11}

© 0 N o g W N

So now PDFTOOLBOX has access to the computer modern roman font (cmr) at the sizes specified. The
purpose of the default size is for when a size is not available. For example, requesting the rm font at size
13 will give you cmr10 at 13pt. The default size is required.

PDFToOOLBOX provides the following fonts:

rm: cmr it: cmti bf: cmbx sc: cmcsc mi: cmmi sy: cmsy ex: cmex sl: cmsl
ss: cmss tt: cmtt msam: msam msbm: msbm eufm: eufm rsfs: rsfs

\applyfontcode (font code): Applies the font specified by font code. For example, \applyfontcode cmrl0
will set the font to cmr10.

\setfontfamily {(font)}{(family)}: Sets math font family family to the font font (which is specified by
Naddfontl). For example, \setfontfamily{rm}{0} sets the alpha-numeric font family to rm.

\setfont {(font)}: Sets the current font to font. The current font is stored in the macro \currfont.

\setscale {(scale)}: Sets the current font scale to scale. The current font scale is stored in the macro
\currscale.

\setfontandscale {(font)}{(scale)}: Sets the current font to font and scale to scale.

PDFToOLBOX also provides the following font switches (which are simple wrappers around \setfont which also
set \fam):
\bf, \it, \bb, \sf, \sl, \frak, \scr

\mathfonttable {(family)} [{offset)]1{{table)}: The \mathfonttable macro’s purpose is to define multiple
mathematical characters for the same family. table consists of a sequence of macros followed by numbers

8 pdfDstruct

(e.g. \square0) which correspond to the name of the macro and the math type (in this case 0:

ordinary/\mathord). \mathfonttable will iterate over table and \mathchardef the macro to be equal

to the character at the current position in family family of the type specified. If offset is specified, it will

start iterating over the family starting from the offset.

More explicitly, if family is X and the ith index in the table is \X N, then the macro does essentially
\mathchardef\X = XNi

To skip over an index, simply write __.

Using \mathfonttable, PDFTOOLBOX defines the following:

\boxdot: [J \boxplus: H \boxtimes: X \square: U
\blacksquare: B \diamond: ¢ \blackdiamond: ¢ \rotateclockwise: O
\rotatecounterclockwise: O \rightleftharpoons: = \leftrightharpoons: = \boxminus: B
\Vdash: I \Vvdash: IIF \vDash: F \twoheadrightarrow: —»
\twoheadleftarrow: « \leftleftarrows: &= \rightrightarrows: =3 \upuparrows: ||
\downdownarrows: || \uprightharpoon: | \downrightharpoon: | \upleftharppon: |
\downleftharpoon: | \rightarrowtail: — \leftarrowtail: « \leftrightarrows: <
\rightleftarrows: & \Lsh: 9 \Rsh: I’ \rightsquigarrow: ~
\leftrightsquigarrow: « \looparrowleft: «P \looparrowright: & \circeq: =
\succsim: 7 \gtrsim: 2 \gtrapprox: % \multimap: —o
\therefore: .. \because: " \Doteq: = \triangleq: £
\precsim: = \lesssim: < \lessapprox: 3

2.4 Hooks

ppFTooLBOX provides a tool, inspired by I¥TEX, called hooks (source in pdfDstruct/hooks.tex). Hooks are
simply snippets of code that can be inserted into macros and then altered later. An example is given at the end
of this section.

\createhook {(name)}: Creates a hook by the name of name.
\appendtohook {(name)}{(code)}: Appends code to the hook specified by name.
\prependtohook {(name)}{(code)}: Prepends code to the hook specified by name.

\callhook {(name)}: Calls the hook specified by name.

pDFToOLBOX provides a builtin hook called end which is executed by \bye. Throughout the document, you can
add macros to an array called document data, then all these definitions are written to the file \jobname.data
by the end hook.

Specifically, you can use the \docdata macro to add a macro to the document’s data, e.g. if you have a macro
\name which has the author’s name (say, S. Lurp), you can do \docdata\name, and this will write the line
\gdef\name{S. Lurp} to the data file. Then at the beginning of the document next compilation, you can load
all definitions in the data file.

2.5 Indices

In pdfDstruct/index.tex, PDFTOOLBOX provides macros for creating an index. The index is organized into
categories and items within each category, and an associated value. A category may be something like “man-
ifolds” and an item within this category may be “topological” which has a value corresponding to the page
number where topological manifolds are defined.

\indexize {({options)}: Adds an item to the index, specified by options, which has fields:
(1) category (required): the category of the item;
(2) item: the item of the item;
(3) value (required): the value of the item;

(4) expand value (valueless): added if value should be expanded (e.g. if value is a macro corre-
sponding to the page number, it needs to be expanded);

(5) add hyperlink (valueless): whether or not the item’s values should be hyperlinked.

\seealso {(options)}: Adds a “see also” item to the index: one which redirects to another index item. options
is a map which has fields:

pdfDstruct 9

(1) category (required): the category of the item;

(2) item: the item of the item;

¢

(38) dest (required): the destination of the “see also” (e.g. if the item is “wedge product”, you may
want to also see “exterior product”, and so the destination may be “exterior product”);

(4) hyperlink: an anchor to link to;
(5) index link (valueless): a flag of whether or not the anchor is within the index.

To link to an item within the index, suppose of category C and item I, set hyperlink to C:I (or just C:
if T is empty), and set index link.

\index: Prints the index.

\addtoindex {(category)} [(item)]: Adds an item to the index of category category and item item. Its value is
\@defaultindexval (by default \the\pageno), and expand value and add hyperlink are set.

2.6 Lists

In pdfDstruct/lists.tex, PDFTOOLBOX provides macros for creating lists of text.

There are two types of lists: unenumerated and enumerated. Unenumerated lists start with \blist and end
with \elist. Each item begins with \item. The symbol used for each bullet point is determined by the nested
depth of the list. For a depth of NV, the symbol used is stored in the macro \1iststyleN.

Similarly enumerated lists start with \benum and end with \elist. Each item begins with \item, and the style
for the enumeration is determined by the depth of the list. For a depth of N, the nth element is styled with
\enumstyleN{n}. It is put in a box of width \enumstyleN@wd.

To add text in between items (not as part of the list), you can use \mtext.

2.7 Table of Contents

In pdfDstruct/tableofcontents.tex, PDFTOOLBOX provides macros for creating and displaying tables of
content.

\addtoccontent {(marker)}{(title)}{(value)}{{depth)}{{anchor)}: Adds content to the table of contents. The
marker is marker (e.g. 1.1; this is printed to the left of the title), title is title (e.g. chapter name), value is
value (e.g. page number), depth is depth, and is linked to the anchor anchor. The depth depth determines
the style used in the table (see \settocdepthformat]).

\tableofcontents: Prints the table of contents.

\settocdepthformat {(depth)}{{options)}: Sets the format of the table of contents at the depth depth. options
is a map with the following fields:

e marker: the style for the marker (default is \setfont{rm}; the marker is passed as a parameter to
marker);

e marker buffer: the buffer between the title and marker (default is .25cm);
e title: the style for the title (default is \setfont{rm}; the title is passed as a parameter to title);

e value: the style for the value (default is \setfont{rm}; the value is passed as a parameter to
value);

o leader: the leader to add between the title and value (default is nothing);
e indent: the amount to indent the line (default is Opt);

e buffer: the amount of buffer to add around the line (default is Opt).

PDFToOLBOX provides four types of sectioning: parts, sections, subsections, and subsubsections. Each has a
counter in its name (e.g. section), and a macro with the current section name (e.g. \currsection).

\part {(title)}: Adds a part to the document.

10 pdfGraphics

\section (*){(title)}: Adds a section to the document. If the asterisk is added, the section is a “pseudosec-
tion”: the section counter is not incremented and not displayed, and the section is not added to the table
of contents. Otherwise the section counter is incremented and displayed, and the section is added to the
table of contents.

\subsection (*){(title)}: Adds a subsection to the document. If the asterisk is added, the subsection is a
“pseudosubsection”: the subsection counter is not incremented and not displayed, and the subsection is
not added to the table of contents. Otherwise the subsection counter is incremented and displayed, and
the subsection is added to the table of contents.

\subsubsection (*){(title)}: Adds a subsubsection to the document. If the asterisk is added, the subsubsec-
tion is a “pseudosubsubsection”: the subsubsection counter is not incremented and not displayed, and the
subsubsection is not added to the table of contents. Otherwise the subsubsection counter is incremented
and displayed, but the subsubsection is still not added to the table of contents.

3 pdfGraphics

The pdfGraphics section of the PDFTooLBOX toolbox is for pdf-specific graphics macros. You can use it to
create colorful documents with illustrations, etc.

3.1 Colors

In pdfGraphics/colors.tex, PDFTOOLBOX provides macros for coloring text and areas of your document.

\color (color space){(code)}

\color {(name)} : Switches the color of the document. In its first form, color space corresponds to
either rgb or cmyk, and code is either an rgh or cmyk code. In its second form, if name is a predefined
color name (see Ndefinecolorl), the color is switched to it.

\localcolor (color space){{code)}{(text)}
\localcolor {(name)}{(text)} : Switches the color of text, according to the options provided (see

NcoTorl).

\definecolor {(name)}{(color space)}{(code)}: Defines a color of name name whose space is color space
(either rgb or cmyk) of code code (either an rgb or cmyk code).

\letcolor {({new name)}{(name)}: Defines a color of name new name to be equal to the existing color of
name name.

\definecolormacro {(name)}{(color space)}{({code)}: Calls Ndefinecolorl, and also defines a macro of name
name which is equivalent to \localcolor <color space>{<code>}{#1}.

The following colors are defined:
red blue orange purple FNERe black darkgreen grey

\highlightbox (color space){{code)}{{material)}
\highlightbox {(name)}{(material)} : Colors the background of the material material according
to the color provided. For example \highlightbox {red}{pdfToolbox} will yield BlillcONIoH.

\coloredbox (color space){{code)}{{material)}
\coloredbox {{name)}{(material)} : Like but adds a buffer of space around ma-

terial in accordance with \bufferwidth and \bufferheight. For example the following code: \col-

oredbox {red}{pdfToolbox}; will yield _

\framecoloredbox (color space){(code)}{{material)}
\framecoloredbox {(name)}{(material)} : Like Ncoloredbox] but adds a frame around material of
width \framewidth. For example \framecoloredbox {red}{pdfToolbox} will yield

\framebox {(material)}: Adds a frame around material with a buffer of \bufferwidth and \bufferheight of
width \framewidth.

\curvedcolorbox {(stroke color)}{{bg color)}{{material)}{{curve control)}: Creates a curved color framed
box around material with frame color stroke color and background color bg color (which may be names
or of the form <color space>{<code>}. The curve’s stroke width is determined by \curvewidth, and
the buffer around the material is determined by \curvebuffer.

pdfGraphics 11

control is a sequence of 8 symbols of the form (bline) (bldot)(lline)(tidot) (tline)(trdot)(rline) (brdot) where
each (Xdot) corresponds to whether or not a corner is curved or not (bl for bottom left, t1 for top left,
etc.), and each (Xline) corresponds to whether or not a border is drawn or not (b for bottom, 1 for left,
etc.). For a corner, . corresponds to a curve and X for a right corner. For a border, - corresponds to
drawing the line and _ to not.

A shadow of color \boxshadowcolor is added to to the box, at an x and y offset of \shadowxoff and
\shadowyoff respectively.

So for example:
\curvedcolorbox {blue}{red}{\color {white}pdfToolbox}{-.-.-.-.}": |[ReleisReIeIlsloy

\curvedcolorbox {blue}{red}{\color {white}pdfToolbox}{-X-.-.-.}"': [Eleiilikelellsle)
\curvedcolorbox {blue}{red}{\color {white}pdfToolbox}{-.-X-.-.}": |[ReleisiReIeIIsfoy
\curvedcolorbox {blue}{red}{\color {white}pdfToolbox}{-.-.-X-.}"': [ReeidkeIe)lsfor'¢
\curvedcolorbox {blue}{red}{\color {white}pdfToolbox}{-.-.-.-X}"': |[ReleiliReIeIlsloy
\curvedcolorbox {blue}{red}{\color {white}pdfToolbox}{_X-X_X-X}': [Relcidikele)lslo>'¢

\curvedcolorbox {blue}{red}{\color {white}pdfToolbox}{_._._._.}": [Roleidikelellslo)'s

\curvedcolorbox {blue}{red}{\color {white}pdfToolbox}{-X_X-X_X}': [RelcidkeIe)lsfors

\fakebold {(material)}: Bolds the material material (essentially just thickening the stroke width according to
\fakeboldwidth).

\flip {(material)}: eqit material about its vertical axis.

3.2 Colorboxes

In pdfGraphics/colorboxes.tex, PDFToOOLBOX provides macros for pretty printing textboxes (ppboxes).
These are simply colored textboxes which can split across pages. There are two kinds of pretty textboxes:
ppboxes and linedppboxes.

\bppbox {{bg color)}{(stroke color)}{{fg color)} [{curve control)]l ... \eppbox: This creates a ppbox, which
is just a wrapper around Ncurvedcolorboxl.

\blinedppbox {(bg color)}{(stroke color)}{(fg color)} ... \elinedppbox: This creates a colored textbox
with a rule down the left side. For example:

This is a linedppbox with a red background, black stroke, and white text.

The width of the rule is determined by \pprulewd, the vertical buffer within the box (around the text)
is determined by \pprulevbuf, and the horizontal buffer on the left is \pprulehbuf.

3.3 Illustrating

In pdfGraphics/pdfdraw.tex, PDFTOOLBOX provides macros for creating illustrations.

This feature scares me. Its implementation is a mess and I am scared to change it; but I will need to at some]
point.

\bdrawing ...\edrawing: Begin a drawing environment. The drawing environment is a plane as large as the
drawings within it. (0,0) corresponds to the bottom left corner.

\addnode {(text)}{(z)}{(y)}{(name)}: Creates a node by the name of name with text text at coordinate
(z,y). You can access the following values (called node-relative coordinates): <name>.left, <name>.top,
<name>.right, <name>.bottom, <name>.xcenter, <name>.ycenter.

\drawpath {(start z)}{(start y)}{{end)X {end y)H(z of)I{(y of) H(start cap)}{{end cap)}{{color)}:
Draws a line from (start z, start y) to (end z, end y). This is offset by off z on the z-axis and off y on
the y-axis (these are dimensions). start cap is the linecap used at the starting point, and end cap is the
linecap used at the end point (see \definelinecap|). The line is drawn in the color color.

The coordinates may be numeric values or node-relative coordinates (see Naddnodel).

12 pdfGraphics

\drawbezier {(start z)}{(start y)}{({end z)}{{end y) I {off) H{curvature)}{(start cap)}{{end cap)}{{color)}:
Draws a curve from (start z, start y) to (end z, end y) with curvature curvature. This is offset by off,
which must be a pair of the form {<x off>}{<y off>} corresponding to the z-axis offset and y-axis
offset respectively (dimensions). start cap is the linecap used at the starting point, and end cap is the
linecap used at the end point (see Ndefinelinecap|). The line is drawn in the color color.

The coordinates may be numeric values or node-relative coordinates (see Naddnodel).

\definelinecap {(name)}{{code)}{(width)}: Defines a linecap by the name of name. code is the code which
draws the linecap (see [Infernals of pdfDraw]), and width is the width of the linecap.

The provided linecaps are:

S>> <Kie |-i— —|i= >>1» <K<K <« o0:0
There is also an empty linecap -.

Outside of drawing environments, PDFT0OOLBOX provides a macro to make diagrams, \drawdiagram. Its usage is
\drawdiagram {(table)}{{arrows)}. table is a normal TEX alignment table (similar format as \halign, without
the preamble). arrows is a collection of macro calls.

\diagarrow {(options)}: Draws an arrow in a \drawdiagram diagram. options contains the following keys:

e from (required): the cell from which to start the arrow. Cells start indexing at {1,1} for the top
left cell where the first number is the row and the second the column;

e to (required): the cell to end the arrow;

e left cap (default -): the start linecap;

e right cap (default >): the end linecap;

e color (default black): the color to draw the arrow in;

e x off (default Opt): the x-axis offset;

e y off (default Opt): the y-axis offset;

e text: the text to add on the arrow;

e x distance (default Opt): the amount to move the text on the x-axis;
e 7y distance (default Opt): the amount to move the text on the y-axis;
e slide (default .5): where to place the text relative to the arrow;

e curve: the amount to curve the arrow;

e dashed (valueless): add to make the arrow line dashed;

e dotted (valueless): add to make the arrow line dotted,;

e origin orient: the placement of the start of the arrow relative to the origin
(a pair like {left,bottom});

e dest orient: the placement of the end of the arrow relative to the destination
(a pair like {left,bottom}).

So for example,

1 \drawdiagram{

2 A&B\cr

3 C&D

4 H

5 \diagarrow{from={1,1}, to={1,2}, left cap=<<}

6 \diagarrow{from={1,2}, to={2,2}, color=rgb{i 0 0}, text={hello}, x distance=.5cm}

7 \diagarrow{from={2,2}, to={2,1}, curve=10pt, origin orient={xcenter,bottom}, dest orient={xcenter,bottom}}
8 \diagarrow{from={2,1}, to={1,1}, dashed, left cap=o, right cap=o}

9 }

Will yield

pdfToolbox internals 13

A > B

Q

i l hello
b
C D

~_
Between each row of the diagram, space of width \diagrowbuf is added. Between each column, \diagcolbuf.
The height of each row is at least \diagrowheight and the width of each column is at least \diagcolwidth.

3.4 Listings

In pdfGraphics/ptb-listings.tex, PDFTOOLBOX provides macros for writing code listings. The mechanism
for how PDFToOLBOX’s listing works is greatly inspired by Petr Olsak’s [OpTEX. The mechanism is largely the
same, though the implementation may differ.

\setupverb: This will set up a verbatim environment, essentially changing all special category codes to 12.

\blisting (first line) ... \elisting: Writes ... in a verbatim environment, with syntax highlighting if
set (see \Lloadsyntax] and \setsyntax]). first line (the rest of the line after \blisting) will be executed
as normal (so you can set syntax here; see \setsyntax]). The line number of each line in the listing is
stored in \lstlinenum, which is not reset after each listing.

\listfile {(file)} [(start)-(end)]: Creates a listing from file file. Reads between lines start and end (inclusive).
If start isn’t provided, starts from 1. If end isn’t provided reads until the end (actually a large number).

\loadsyntax {(language)}: Loads in the necessary information for language syntax highlighting. The informa-
tion is input from the ptb-syntax file ptb-syntax-language. See the [nfernals of this secfion! for more
information on how to write such a file.

Currently PDFToOLBOX provides support for syntax highlighting of TEX (language is TeX) and of C
(language is C).

\setsyntax {(language)}: Sets the syntax to be used for syntax highlighting. This must be used after
\loadsyntax for language.

Some useful macros for customizing syntax highlighting are the following:
e \lstlineskip: the space added between each line in the listing;
e \lstvbuf: the space added before and after the listing;
e \lstlinenumbuf: the kerning added between the number and code on each line in the listing;
e \lstnumfontset: sets the font (and whatever else, e.g. color) of the numbers of each line in the listing;
e \lstfontset: sets the font (and whatever else, e.g. color) of the content of each line;
e \lststrut: the strut added to each line in the listing (for uniform spacing).
Some useful colors to be aware of:
o 1st-fg: the default foreground color of the listing;
e 1st-bg: the background color of the listing;
e lst-comment: the colors of comments (must be activated in the ptb-syntax file);
e lst-number: the colors of numbers (must be activated in the ptb-syntax file).

PDFTOOLBOX also provides a token list \everylisting which is inserted before every listing. So for example
doing \everylisting={\1lstlinenum=03} will reset the line numbering before each listing.

https://ctan.org/pkg/optex?lang=en

II. PDFTOOLBOX INTERNALS

Utilities 15
1 Utilities
In pdfToolbox-utils.tex, PDFTOOLBOX provides various useful utilities for a variety of (relatively) simple
tasks.

1.1 Simple Macros

_checkloaded {(name)}: Place this at the beginning of a package or a file in a package to ensure you don’t
include the same file multiple times. It will check if name has already been loaded: if it has been, it stops
input; otherwise it remembers that name has been loaded and continues inputting it.

A few useful short macros:

e _xp: shorthand for \expandafter;

_nul: defined to be _nul; useful as a marker (used, for example, to mark the end of something);
e _id: defined as \def_id#1{#1};

e _gobble: gobbles the next parameter;

e _gobbletilnul: gobbles until it sees _nul (definition is \def_gobbletilnul#1_nul{});

e _mstrip: given a control sequence, returns its name without the escape character;

e \True: defined to be \True; used when returning a value;

e \False: defined to be \False; used when returning a value;

o \glet: \globalllet;

e _xplet: takes two inputs A and B, suppose they expand to X and Y respectively. Then _xplet{A}{B}
is equivalent to \let XY;

e _afterfi: within an \if...\fi construct, placing code inside _afterfi will execute it (if the condition
matches) after the \fi;

e \say: prints the input on the terminal (on its own line).

_ifnextchar (char){(first)}{(second)} \@ifnextchar (char){(first)}{(second)}: Inspired by ITEX. Looks
at the following character, if it is equal to char, executes first and otherwise executes second. The
following character is left in the input stream.

_ifstar {(first)}{{second)} \@ifstar {(first)}{(second)}: Inspired by BTEX. Looks at the following char-
acter, if it is an asterisk, executes first and otherwise executes second. The asterisk is removed from the
stream.

_nopt {(dim expression)}: Expands to the computation of dim expression (a dimension expression) without
the trailing pt.

_noptfloor {{dim expression)}: Expands to the whole part of the computation of dim expression (a dimension
expression) without the trailing pt.

\literal (macro definition): Equivalent to \def\X<macro definition>\X.
_getline (macro): Reads until a linebreak and then passes that to macro as its parameter.

\reverse (macro){(list)}: Reverses list and puts the result in macro.

1.2 Setters

PDFTOOLBOX has a concept of setters: these are the macros used for defining things. There are four three: \cur-
rlet, \currdef, \curredef, \currset. These generally alternate between \let, \def, \edef, \empty
and \glet, \gdef, \xdef, \global. You can change the definitions via the two macros \localsetters and
\globalsetters.

So for example, if you’d like to use an array and make the changes global, you’d first execute \globalsetters.

16 pdfData Internals
1.3 Repeating Macros

\commap (macro){(list)}: If list is a comma-separated list of the form x1,...,xN and macro is \X, this will
execute \X{x1}...\X{xN}.

\map (macro){(list)}: If list is a list of the form x1\dots xN where each xI is a group or a single token, and
macro is \X, this will execute \X{x1}...\X{xN}.

_repeat {(times)}{(code)}: Executes code times times.
_prepeat {(times)}(macro): If times is N and macro \X, executes \X{1}...\X{N}.

_varrepeat {(start)}{(stop)}{(step)}{comparison){macro): If macro is \X, start is i, step is d, and stop is
f: executes \X{iF\X{i+d}\X{i+2d}...\X{i+Nd} until the condition (i+Nd /it comparison /tt f)is
satisfied.

2 pdfData Internals

Due to the nature of its use, most of the macros defined in the pdfData section have already been explained.
The only part of pdfData which requires explanation regarding its internals is mappings, which offers richer
features than already explained.

2.1 Mappings
Mappings are stored in two places: a key list, which is simply a macro consisting of pairs of the form
{key}{value}, and macros \key@k (the second k is variable in the name) whose definition is v.
Essentially, the major macro in this part is _mapkeys_with_setter. Its usage is

_mapkeys_with_setter (mapkey macro){key macro){(map)}
where mapkey macro is the macro which manages the creation of a key-value pair (explained below), key macro
is a macro to store the list of keys, and map is a map of key-value pairs.

What happens is _mapkeys_with_setter will iterate over map and for every key-value pair (k, v) if the setter
mapkey macro is \M and key macro is \K, it calls \M \K{k}{v}. This should (if \M is defined properly) update
\K to include the pair (k,v). Furthermore, it should store the value v in the macro \key@k (the second k is
variable in the name).

The macro _update_lastkeys is provided for the former: to update \K. Simply pass _update_lastkeys

\K{k}{v}. The simplest setter (mapkey macro) is _vanilla_mapkey, which does exactly what was described
and nothing more. Its definition is simply:

1 \def_vanilla_mapkey#1#2#3{/,

2 _xp\def\csname key@_id#2\endcsname{#3}/
3 _update_lastkeys{#1}{#2}{#3}/

4}

You can use the macro \getvalue to get the value of a key: its definition is simply

1 \def\getvalue#1{%
2 \csname key@#1\endcsname,

3}

Another macro is \keyexists whose use is
\keyexists {(key)}(macro)(key list)

It checks if the key key is in key list, and if it is, defines macro to be equal to the key. Otherwise macro is
defined to be _nul. For this reason, if you'd like a key to have no value, it is advised to use the \novalue
macro (whose definition is just \novalue).

Another setter is _vardef_mapkey, whose only difference from _vanilla_mapkey is that instead of \defing
\key@k to be equal to v, _vardef_mapkey uses _vardef instead of \def (which can be set before calling
_vardef_mapkey), and _vardefs \key@k to be the (once) expansion of _varmap{v} (where _varmap) can
also be set before calling (_vardef_mapkey).

\mapkeys is defined as follows:

pdfGraphics Internals 17

1 \def\mapkeys#1#2{7,

2 _mapkeys_with_setter_vanilla_mapkey_keymappings{#11}/,
3 _xp_setdefaults_xp{_keymappings}’

4 _mapkeys_with_setter_protected_mapkey\lastkeys{#2}/

5 _check_required_supplied’

6

So first it gets the key-value pairs in options (#1) using _vanilla_mapkey; it places the results in _keymap-
pings. Then it sets the default values (this is what _setdefaults does; as well as figuring out which keys
are required). Then \mapkeys calls _mapkeys_with_setter] using the setter _protected_mapkey] on in-
put (#2). Tt stores the results in \lastkeys. Then it checks that the required keys have been supplied
(_check_required_supplied).

The setter _protected_mapkey is more complicated than the previously-discussed setters. Its use, like all
setters, is

_protected_mapkey (key list){(key)}{(value)}

But in this case, key has a value also in _keymappings as well; this value corresponds to another map containing
the settings of key (name, default, required, etc.). So now _protected_mapkey will find the settings of key,
and get the values of each field (via _mapkeys_with_setter). Then it calls _vardef_mapkey with key and
value, using the definitions of _vardef and _varmap according to the settings. Finally it sets the macro name
(if provided in the settings) to be equal to the value.

3 pdfGraphics Internals

3.1 Colors

There are some useful macros in the pdfGraphics/colors.tex, here we describe them.

These macros and file require a clean-up. Unfortunately many other macros are dependent on them, and I
am scared to significantly alter anything. One day, though.

_rgb_encode {(rgb code)}

_rgb_encodebg {(rgb code)}

_rgb_encodefg {(rgb code)}

_cmyk_encode {({cmyk code)}

_cmyk_encodebg {(cmyk code)}

_cmyk_encodefg {(cmyk code)}: Gets the code for the specified color for the foreground or background or
both.

_setcolor_code {(pdf code)}: Sets the current color using pdf code (which can be obtained using one of the
above macros). Essentially just pushing pdf code onto the color stack. After the current group, calls
_pdfcolor_restore.

_pdfcolor_restore: Restores the color (pops from the color stack).

_color_set {{color space)}{(color code)}

_colorbg_set {(color space)}{{color code)}

_colorfg_set {(color space)}{{color code)}: Sets the current color using color code according to color space
(either rgb or cmyk).

_color_defined {(name)}
_colorbg_defined {(name)}
_colorfg_defined {(name)}: Sets the current color according to the color name (see Ndefinecoloxrl).

_getcolorparam (macro){(place)}(color): Gets the pdf code for color (which may be of the form rgb{...},
cmyk{...}, or {name}), and calls macro with it as a parameter. place is either fg, bg, or left empty.

_setcolor {(place)}{{color)}: Sets the current color according to place and color. place is either fg, bg, or
left empty.

_getcolor {(place)}{{color)}: Expands to the pdf code for color (place is either £g, bg, or left empty).

3.2 Colorboxes

18 pdfGraphics Internals

PDFTOOLBOX provides a relatively simple interface for creating colorboxes like \bppbox. The main macro is
_splitcontentbox, whose usage is

_splitcontentbox {(buffer)}({macroT)(macroS)(macroM){macroFE)

Which repetitively splits the box _contentbox into _splitbox to fill the remaining material on a page or
in the box itself. Then the split box is passed to macroX for pretty formatting. macroT is if the material fits
entirely on a single page, otherwise the first box uses macroS, the last box uses macroE, and all intermediate
boxes use macroM. buffer is the total amount of vertical buffering that macro adds to the box it prints.

So to create your own prettyprint-box (ppbox), you create two macros, say \beginpp and \endpp. In \beginpp
you add the code which should go before the ppbox and starts getting content for _contentbox. For example,
it could be as simple as:

1 \def\beginpp#1#2{/

2 \def_colorcontentbox{’

3 \hbox{\coloredbox{#1}{_setcolor{}{#2}\box_splitbox}}%
4 Y

5 \par\kern.5cm\null\pary,

6 \setbox_contentbox=\vbox\bgroup

7 \hsize=\dimexpr\hsize-\bufferwidth * 2\relaxy,

s

9

10 \def\endpp{/

11 \egroup’

12 _splitcontentbox{\bufferwidth * 2},

13 _colorcontentbox_colorcontentbox_colorcontentbox_colorcontentbox’
14 \kern.5cm\relax,

15 }

This creates a ppbox which is simply a wrapper around Ncoloredbox]. It colors the background in #1 and the
foreground in #2.

In depth, here’s how it works:

(1) First, \beginpp defines _colorcontentbox to simply place _splitbox into a \coloredbox of color
#1, and sets the foreground color to #2.

(2) Then it adds some space before the start of the first ppbox. The reason for the \null\par is to move
the kern from the list of recent contributions to the main vertical list (see, e.g. the TEXbook for more
information on TEX’s output routines).

(3) Then \beginpp begins reading content for _contentbox. It alters \hsize to compensate for the buffer
added by \coloredbox.

(4) When \endpp is called, it first stops the capture of _contentbox with \egroup.

(5) Then it calls _splitcontentbox{\bufferwidth * 2}_colorcontentbox, which splits the captured
material (in _contentbox) and places each _splitbox in _colorcontentbox, which was defined in
\beginpp. \bufferwidth * 2 corresponds to the amount of vertical buffering _colorcontentbox
adds to _splitbox.

(6) \endpp adds buffering after the final ppbox.

3.2.1 The Mechanism

In this section we describe the mechanism through which PDFTOOLBOX creates colorboxes. A good reference
for this section, which discusses the mechanism through which TEX creates pages (the output routine) is “The
Advanced TgXbook” by David Salomon.

We begin with a simple macro which expands to the amount of space left in the page.

ptb-colorboxes
9 \def_spaceleft{/

10 \ifdim\pagetotal=\z@Y
11 \dimexpr\vsize - \topskip\relax
12 \else%

13 \dimexpr \pagegoal - \pagetotal - \topskip\relax

pdfGraphics Internals 19

ptb-colorboxes
14 \fi%

15 F

\pagetotal is the height of the main vertical list (MVL). \pagegoal is the goal height of the MVL. It is generally
equal to \vsize, but when footnotes or similar are generated, their heights are subtracted from \pagegoal. At
the beginning of each page, \pagegoal is set to \maxdimen (hence the use of the \ifdim).

PDFTOOLBOX stores the content to be split across pages in \box_contentbox.

The following macro _getsplitdim gives the dimension that _contentbox should be split into. Its parameter
is the size of the extra vertical glue that is added to each box.

ptb-colorboxes
17 \newif\if_recheck

18 \newif\if_lastbox
19 \newif\if_firstbox
20 \def_getsplitdim#1{%

21 \ifdim\dimexpr_spaceleft-#1\relax>\ht_contentbox
22 \edef_splitdim{\the\ht_contentbox}%
23 _recheckfalse/,

24 _lastboxtrue,

25 \else’

26 _lastboxfalse},

27 \ifdim\dimexpr_spaceleft-#1\relax>\z@Y
28 \edef_splitdim{\the\dimexpr_spaceleft-#1\relax}/,
29 _recheckfalse/,

30 \else

31 \if_recheck},

32 \vfil\break\vfilnegy,

33 _recheckfalse},

34 \else/,

35 \null\par?

36 _rechecktrue,

37 \£fiY%

38 _getsplitdim{#1}%

39 \£fi%

40 \fi%

a 3

(1) First we check if there is enough space to place the entirety of the box into the page. If so set _splitdim
to the height of the box, and set _lastbox to true since we wil be placing the entirity of the box.

(2) Otherwise, check if there is any space left on the current page (recall that #1 is the amount of vertical
space added.) If there is, then set _splitdim to the amount of space left.

(8) Otherwise, we perform the following checks:

(i) If _recheck is false, then we add \null\par to the page. This just moves all recent con-
tributions to the MVL. The reason for this is that we need to get rid of all the material that
came before the colorbox, and we then recheck the dimension, and set _recheck to true.

(ii) Otherwise, the MVL is up-to-date, and there is still not enough room. So we try to fill in
the rest of the vertical space and \break. If for whatever reason this doesn’t work, we add
\vfilneg to remove the glue added.

In either case we get the dimension again.

Now, the main macro is _splitcontentbox:

ptb-colorboxes
46 \def__splitcontentbox#1#2#3#4#5{

20 pdfGraphics Internals

ptb-colorboxes

47 \unless\ifvoid_contentbox

48 _getsplitdim{#1}%

49 \setbox_splitbox = \vsplit_contentbox to_splitdim\relax
50 \setbox0=\vbox{%

51 \if _firstbox

52 \if_lastbox’%

53 #2%

54 \else’

55 #3Y,

56 \£fi%

57 \else/,

58 \if_lastbox’%

59 #5Y,

60 \else’,

61 #47,

62 \fi%

63 \fiY%

64 Y

65 \vbox to\z@{\copyO\vss}/

66 \kern\htO\relax\penalty\z@%
67 _firstboxfalse,

68 __splitcontentbox{#1}{#2}{#3}{#4}{#5}/
69 \£fi%

70 }

71 \def_splitcontentbox#1#2#3#4#5{{/,
72 \splittopskip=\z@/

73 \boxmaxdepth=\z@%,

74 \offinterlineskip/

75 _firstboxtrue’

76 __splitcontentbox{#1}{#2}{#3}{#4}{#5}/,
77 1}

It first sets \splittopskip to Opt so that no extra glue is added to the top of \vsplit. Then \boxmaxdepth
is also set to Opt so that the depth of the split boxes will be Opt and we can deal only with height. We also
turn off interlineskip so there is no extra glue added around the split boxes (these do not affect the contents of
_contentbox since it has already been boxed).

Now we repeat until _contentbox is empty:
(1) we get the amount of space to split the box into via _getsplitdim (explained above);
(2) we split _contentbox into _splitbox of this dimension;

(3) #2is the output routine of the colorbox, it places the contents of _splitbox into whatever format the
user specifies. We set \boxO to this;

(4) we add the box to the page, and set a penalty of 0 so that the page can be broken at that point if
necessary.

The definition of \bppbox and \eppbox are a little enlightening:

ptb-colorboxes

=

9 \def_ppbuf{Opt}
80 \def_bppbox#1#2#3 [#4]{/,

81 _getdotsnlines#4_nul/,

82 \def_colorcontentboxT{/

83 \hbox{\curvedcolorbox{#2}H{#1}{_setcolor{}{#3}\box_splitbox}{#4}}%
84 Yh

85 \def_colorcontentboxS{%

86 \hbox{\curvedcolorbox{#2}{#1}{_setcolor{}{#3}\box_splitbox}%

pdfGraphics Internals 21

ptb-colorboxes

87 {_X_linel_dottl_linet_dottr_liner X}%

88 Yh

89 Yh

20 \def_colorcontentboxM{/

91 \hbox{\curvedcolorbox{#2}{#1}{_setcolor{}{#3}\box_splitboxl}/
92 {_X_linel X_X_liner X}/

93 Yh

94 Yh

95 \def_colorcontentboxE{/,

96 \hbox{\curvedcolorbox{#2}{#1}{_setcolor{}{#3}\box_splitboxl}/
97 {_1lineb_dotbl_linel X_X_liner_dotbrl}J,

98 Y

99 Yh

100 \par’,

101 \kern_ppbuf\relaxy,

102 \null\parj Move the kern from recent contributions to MVL

103 \setbox_contentbox=\vbox\bgroup/

104 \hsize=\dimexpr\hsize-_actual_curve_buf * 2\relax

105}

106
7 \def\bppbox#1#2#3{/,

108 _ifnextchar[{_bppbox{#1}{#2}{#3}}{_bppbox{#1}{#2}{#3}[-.-.-.-.1})
109 }

1

o

110
111 \def\eppbox{’

112 \egroup’

113 _splitcontentbox{2_actual_curve_buf}y

114 _colorcontentboxT_colorcontentboxS_colorcontentboxM_colorcontentboxE
115 \vskip_ppbuf\relaxy

116}

What’s of interest here is how _bppbox defines the different _colorcontentboxs. Firstly, _getdotsnlines
is a macro which defines _lineside and _dotcorner according to the stream of 8 characters which follow it
(until _nul). Now, _colorcontentboxT is defined as you'd expect. And _colorcontentbox$ is defined so
that it preserves the top corners that are input as well as all but the bottom side. _colorcontentboxM and
_colorcontentboxE are defined similarly.

3.3 Illustrating

[This is a complicated and messy part of PDETOOLBOx. Documentation will be added once it is cleaned up.]

3.4 Listings

3.4.1 The Mechanism

We first begin by discussing the mechanism for how listings work in PDFTooLBOX. Credit where credit is due;
the mechanism is greatly inspired and copied from Petr Olsak’s [OpTEX|, though the implementation may differ.

The mechanism is relatively simple: all PDFTooLBOX does is the following:
(1) call \the\everylisting and whatever is given in the remaining line after \blisting;
(2) call \setupverb which changes the catcode of special characters and ~"M to 12;
(8) capture the entirety of the listing from \blisting to \elisting;
(4) set line spacing (via _setuplstlines);

(5) call \the_commandcapture which simply sets up macros which are called in \the_listingcommands,
which is called immediately afterward (see below);

https://ctan.org/pkg/optex?lang=en

22 pdfGraphics Internals

(6) call \the_commandexecute which executes the commands added in \the_listingcommands on the
listing, and then \the_macrocallmanager which alters the definitions of the macros in _listing-
commands to their proper definitions (explanation later);

(7) at this point, the listing is set up so that everything is ready for printing;
(8) the line manager is set up (which handles printing each line in the listing);

(9) the additional vertical buffering added by \syntaxoutbox is computed into \syntaxoutboxbuf by
\syntaxoutboxsetbuf;

(10) the listing is processed through a ppbox dictated by \syntaxoutbox.

This is a deceptive description of how this process works. But what’s important is _commandexecute, which
has all the commands for setting up syntax highlighting and the verbatim environment. This is not a token list
to messed with by the user directly, it should be done indirectly through _listingcommands, which in turn
should be altered indirectly through ptb-syntax files.

But if no syntax is set, the definition of _commandexecute is essentially:

1 _commandexecute={

2 _execute{_r_replace{ }{\w \w}}

3 _execute{_r_replace{” "M} \w\n\n\w}}
4}

_execute is defined simply to \def_execute#1{#1_code} right before execution, where _code is the
captured listing. And _r_replace is defined to simply be \def_r_replace#1#2#3{\replace{#3}{#1}{#2}}.
So when _commandexecute is called, the result is simply two lines: \replace{_code}{ }\w \w} and

\replace{_code}{""M}{\w\n\n\w}.

\replace (macro){(pattern)}{(replacement)}: Replaces (the expansion of) pattern with (the expansion of)
replacement in the definition of macro.

So the result is that now _code contains the listing, but where each space is now swapped with \w \w and
each line ending with \w\n\n\w. _code is actually defined to be the listing wrapped in \n\w...\w\n, so the
result is that every line in the listing is wrapped in \n...\n and every word is wrapped in \w...\w.

Now suppose you wanted to replace all occurrences of hi with hello. You’d need to add the line _exe-
cute{_r_replace{\w hi\w}{\w hello\w}} to _commandexecute (note that the pattern and replacement
are wrapped in \ws). You can do so with the following command:

_add_command_replace {(pattern)}{(replacement)}: Adds
_execute {_r_replace {(pattern)}{(replacement)}?}

to _commandexecute.

But this is unwieldy, so the actual mechanism used is as follows:

(1) _commandcapture sets the definitions of \replace and \replacefromto| (see below) to
_add_command_replace and _add_command_replacefromto.

(2) _listingcommands contains uses of \replace and \replacefromto, which are executed. This adds
the required lines to _commandexecute.

(3) _commandexecute is executed.

Now to explain \Toadsyntax| and \setsyntax| \loadsyntax {(language)} reads from the ptb-syntaxptb-
syntax file ptb-syntax-language.tex, which should define a token list _language_listingcommands. Then
\setsyntax simply sets _listingcommands to _language_listingcommands.

3.4.2 Usage

Now notice an issue: \replace (and \replacefromto) both expand their arguments. What if the arguments
expand to invalid code? This is the purpose of _macrocallmanager and two basic macros: \call and \mlcall.
They are set to \relax so they aren’t expanded in \replace and friends, and _macrocallmanager sets them
to their proper definitions:

\call (macro){(parameters)}{(last)}: Simply calls \macro (parameters){(last)}.

pdfGraphics Internals 23

\mlcall (macro){{parameters)}{(last)}: If last is equal to x1\n\n x2\n\n...\n\n XN, expands to \call
<macro>{<parameters>}{x1}\n\n...\n\n\call <macro>{<parameters>}{xN}.

Since \call and friends are redefined only after _commandexecute is executed, to call a macro without it
expanding you can use them. For example, to replace int with int colored red, you can use \replace{\w
int\w}{\w\call localcolor{{red}}{int}\w}.

Two shortcuts are provided: \c and \mc. \c {{color)}{(text)} will set the color of text (in a \call), and
\mc {(color)}H(text)} will also set the color but in a \mlcall.

Now what is \replacefromto?

\replacefromto (macro){(start)}{{end)}{(replacement)}: Replacement is a macro definition with a single
pattern (e.g. {#1}). \replacefrom matches

(start)##1(end)

in the expansion of macro and replaces it with replacement, this redefines macro.
So for example if \X expands to (.)(.), \replacefrom\X(){[#1]} will redefine \X to be [.J[.].

3.4.3 An Example

pDFToOOLBOX provides syntax highlight for the C language in ptb-syntax-C.tex, whose content is:
ptb-syntax-C
1 \global\newtoks\lstCcolors

2 \global\newtoks_C_listingcommands

4 \global\lstCcolors={

5 \definecolor{preprocessor}{rgb}{0 0 1}

6 \definecolor{special char}{rgb}{.7 0 .7}
7 \definecolor{keyword}{rgb}{1 0 0}

8 \definecolor{quote}{rgb}{.6 .6 0}

9 7

10

11 \global_C_listingcommands={

12 \the\lstCcolors

13 \replace {\string\"} {{\string\"}}

14 \replacefromto "" {\mc{quote}{"#1"}}

15 \replacefromto {//}\n {\c{lst-comment}{//#1}\n}

16 \replacefromto {/*}{*/} {\mc{lst-comment}{/*#1*/}}

17 \replacefromto {\string#}\n {\c{preprocessor}{\string##1}\n}

18 \bgroup\lccode‘?=‘\{\lccode‘!=‘\}\lccode‘ .= \%\lowercase{\egroup

19 \replace ?{\w\c{special char}{?}\w}/

20 \replace !{\w\c{special char}{!}\w}%

21 \replace .{\w\c{special char}{.}\w}/

22 }

23 \edef_regA{{!@\string$\string~\string&*(O-+=[1;:,.<>/}}%$

24 \def_regB#1{\replace{#1}{\w\c{special char}{#1}\w}}

25 _xp\map_xp_regB_regA

26 \def_regB#1{\replace{\w#1\w}{\w\c{keyword}{#1}\w}}

27 \map_regB{%

28 {auto}{bool}{break}{case}{char}{const}{continue}{default}{do}{double}{else}{enum}y,
29 {extern}{false}{float}{for}{goto}{if}{inline}{int}{long}{NULL}{register}{restrict}y
30 {return}{short}{signed}{sizeof}{static}{struct}{switch}{true}{typedef}{union}y,
31 {unsigned}{void}{volatile}{while}

32 }

33 \def_regB#1{\replace{\w#1}{\w\c{lst-number}{#1}\w}}

34 \map_regB{0123456789}

3

Let us now explain each part of the file:

24 pdfGraphics Internals

ptb-syntax-C

1 \global\newtoks\lstCcolors
2 \global\newtoks_C_listingcommands

4 \global\lstCcolors={

\definecolor{preprocessor}{rgb}{0 0 1}
\definecolor{special char}{rgb}{.7 0 .7}
\definecolor{keyword}{rgb}{1 0 0}
\definecolor{quote}{rgb}{.6 .6 0}

This defines two new token lists, \1stCcolor (for use within the file), and _C_listingcommands, which as
explained previously is what sets the listing commands for the C syntax. \lstCcolor has C-specific colors,
changing it allows you to change the colors of C-specific highlighting. Note that all changes in this file must be

global.

ptb-syntax-C

11 \global_C_listingcommands={

12

\the\lstCcolors

Begins the definition of _C_listing_commands by first defining C-specific colors.

13
14
15
16
17

(1)

(2)
(3)

(4)
(5)

18

20
21
22

ptb-syntax-C
\replace {\string\"} {{\string\"}}
\replacefromto "" {\mc{quote}{"#1"}}
\replacefromto {//}\n {\c{lst-comment}{//#1}\n}
\replacefromto {/*}{*/} {\mc{lst-comment}{/*#1*/}}
\replacefromto {\string#}\n {\c{preprocessor}{\string##1}\n}

Swaps \" with {\"}, so that the quotation in \" (backslash-quote) is not replaced by the following
lines.

Colors between " and " with a multiline coloring of color quote.

Colors between // and \n (the end of the line) with the color of a comment. Notice that it adds back
in the \n; otherwise this will mess up the line-reading.

Replaces between /* and */ with a multline coloring of color 1st-comment.

Replaces from # to the end of line with a coloring of color preprocessor. (Again adding back in \n.)

ptb-syntax-C
\bgroup\lccode‘?=‘\{\lccode‘!=‘\}\lccode‘.=\%\lowercase{\egroup
\replace ?{\w\c{special char}{?}\w}/
\replace !{\w\c{special char}{!M\w}/
\replace .{\w\c{special char}{.}\w}/

Sets replacement for TEX-reserved characters (open and close curly braces, percent).

23
24
25

ptb-syntax-C
\edef_regA{{!@\string$\string~\string&*x (O -+=[1;:,.<>/}}%$
\def_regB#1{\replace{#1}{\w\c{special char}{#1}\wl}}
_xp\map_xp_regB_regh

Replaces non-character letters with a coloring and word break (since, e.g. x.y is not a single word). Note the

use of \map).

26

ptb-syntax-C
\def_regB#1{\replace{\w#1\wt{\w\c{keyword}{#1}\w}}

pdfGraphics Internals 25

ptb-syntax-C

27 \map_regB{%

28 {auto}{bool}{break}{case}{char}{const}{continue}{default}{do}{double}{else}{enum}’,
29 {extern}{false}{float}{for}{goto}{if}{inline}{int}{long}{NULL}{register}{restrictl}’%
30 {return}{short}{signed}{sizeof}{static}{struct}{switch}{true}{typedef}{union}y,

31 {unsigned}{void}{volatile}{while}/,

32 I

Replaces keywords with color keyword.

ptb-syntax-C
33 \def_regB#1{\replace{\w#1}{\w\c{lst-number}{#1}\w}}
34 \map_regB{0123456789}

Colors numbers with 1st-number.
3.4.4 Changing the Output

PDFTOOLBOX outputs the listing in colorboxes according to \syntaxoutbox. The default is just as follows:

ptb-listings
121

122 \def\listfile#1{_ifnextchar[{_listfile{#1}}{_listfile{#1}[-1}}
123

124 \def\lstfileheaderfontset{\setfontandscale{tt}{8pt}}

125

126 \def\syntaxoutbox#1{/,

127 \vbox{\offinterlineskip%

This just places the content in a colored box of color 1st-bg with a text color of 1st-fg, along with placing
a header and footer. We must also set \syntaxoutboxbuf, which is the total amount of vertical buffering
added by \syntaxoutbox to its contents. This is done by \syntaxoutboxsetbuf which must define a macro
\syntaxoutboxbuf to be the total amount of extra vertical space \syntaxoutbox adds.

But we can also do, for example:

1 \letcolor{lst-stroke}{lst-fg}

2 \def\syntaxoutbox#1{/

3 \hbox{\curvedcolorbox{lst-stroke}{lst-bgt{_setcolor{}{lst-fgt#1}{-.-.-.-.}}%
4}

5 \def\syntaxoutboxsetbuf{’

6 \edef\syntaxoutboxbuf{\the\dimexpr_actual_curve_buf * 2\relax}

7}

Now listings will have a curve colored box:

r

\def \X#1#2{%
\ifnum#1>0 7
{\X{\numexpr#1-1\relax}{#2}}~{\X{\numexpr#1-1\relax}{#2}}_{\X{\numexpr#1-1\relax}{#2}1}/
\else%
\vcenter{\hbox{$\m@th\scriptscriptstyle#2$}}%
\fi%
}

© 0 N O o W N R

$$\X{4}\blacksquare$$

\.

(The code outputs the following by the way:)

You can also alter how each line is output. This is done by , which takes a single input and outputs the line to
print in the listing. The default definition is

26 Acknowledgments

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

ptb-listings

\def_syntax_linemanager#1{{/%

}}

\def_regA{#13}%
\def_regB{\w}%
\unless\ifx_regA_regB
\global\advance\lstlinenum by 1\relax
\def\w{}
\setbox0=\hbox{\1lstfontset\lststrut\relax#1}},
\ifdim\wdO<\1lstcodelinewd 7
_syntax_printline{\hbox to\lstcodelinewd{\boxO\hfil}1}J
\else,

\def\w{\allowbreakl}/

_syntax_printline{\vtop{%
\hsize=\1lstcodelinewd\hangindent=1cm\relax\hangafter=1\relax/,
\1lstfontset\lststrut\relax#1\pary,

¥

\fi%
\fi%

But a simpler definition would be just

~N o o W N R

\def_syntax_linemanager#1{{

1

\def_regA{#1}/

\def_regB{\w}%

\unless\ifx_regA_regB
\hbox{#11}

\fi%

Which will simply output the line as-is; without line numbering or splitting over multiple lines. The reason for
the conditional is because PDFTo0OLBOX will pass an empty line containing only \w to _syntax_linemanager
at the last line (this is the only line to do so).

[The passing of \w as the final line was unintended behavior, but it could be useful and was therefore kept.]

Acknowledgments 27

III. ACKNOWLEDGMENTS

28 Acknowledgments

Many thanks to my family: my two brothers, my mother and father, and my sister. Thank you for your eternal
and unwavering support throughout my life, both in the good and the bad.

Thank you to plante (githul)) for the guidance and mentoring in the way of TEX. Many of the macros in this
project are due to, or inspired by, him.

Thank you to Petr Olsdk (websitd), whose articles and documentations have given me much insight and in-
spiration. Especially his article on \pdfliterals and his OpTEX documentation (which inspired much of the
mechanism around PDFTo0OLBOX’s listings feature).

Thank you to the Mathematics Discord server (fnvitd) for fostering a welcoming community where anyone can
learn math, and for first introducing me to the world of TEX.

Thank you to all my friends for their continued support and interest.

Thank you to my dogs, past and present. I adore you both, and will forever.

https://github.com/plante3
https://petr.olsak.net/
https://discord.com/invite/math

