TUGDboat, Volume 0 (2001), No. 0

METATEX

Ramoén Casares

Abstract

METATEX is a set of plain TEX and METAFONT
macros that you can use to define both the text
and the figures in a single source file. Because
METATEX sets up two way communication, from
TEX to METAFONT and back from METAFONT to
TEX, drawing dimensions can be controlled by TEX
and labels can be located by METAFONT. Only
standard features of TEX and METAFONT are used,
but two runs of TEX and one of METAFONT are
needed.

Overview

Together, TEX and METAFONT define the page
layout to the pixel. This means that nothing more
is needed, not even a means of including figures in
a TEX document. To prove this is the aim of this
paper.

To split the typesetting process in two parts,
one to define and draw the characters and the other
to arrange the characters in paragraphs and pages,
is surely the best way to reduce the complexity of
the typesetting task, provided it needs simplification
(see Figure 1). But this method makes it difficult,
for example, to integrate labels with graphics in
figures, because while TEX is best suited to typeset
the labels, METAFONT is the appropriate tool to
draw the graphics. And, of course, labels should be
located in accordance with the graphics.

Therefore, the true successor of TEX has to
include in a single program both the capabilities of
TEX and METAFONT. Then the typesetting engine
would include a powerful graphic tool, a grid in
which to typeset if required, and it could take into
account the shapes of the characters to determine,
for example, kernings or italic corrections. The
other way around is also possible. It could be seen
as a graphic engine with a powerful typesetting
tool. From this point of view, the page would be
a graphic object that could contain paragraphs of
different shapes requested from the typesetting tool.

METATEX, although it does not fulfill the re-
quirements of such a successor, can be seen as an
early sign of its possibilities. For the moment,
METATEX takes advantage of METAFONT’s equa-
tion solving capabilities to locate objects, including
the labels, which are typeset by TEX. The cost of
this nice feature is that two TEX passes are required.

preliminary draft, 10 Aug 2004 18:50

preliminary draft, 10 Aug 2004 18:50

1001

During the first TEX pass a METAFONT file is
written. As it is TEX itself who writes the META-
FONT file, any dimension controlled by TEX can be
used and incorporated in METAFONT’s calculations.
For example, the label sizes, as they will be typeset
by TEX, are made known to METAFONT.

After the first TEX pass, METAFONT draws the
graphic figures and writes the label locations in its
log file. So it is METAFONT’s responsibility to locate
the labels. Note that, depending on the style of
METAFONT programming, this can be completely
determined from TEX. In other words, you can
relate the label location to the location and size of
other METAFONT objects, or not.

When TEX executes its second pass, it takes
the graphics from the new font, reads the location
of labels from the METAFONT log file, and then
everything is complete.

Because labels are just \hboxes typeset by TEX,
every macro currently defined for text automatically
applies also to figures. For example, if a macro
\person is defined to write its argument in a small
caps font and save it to an index file, the same
happens whenever it is used inside a figure label.

Methods

METATEX allows the source file to include, in
addition to the customary TEX macros to control
the text, other commands to generate figures with
METAFONT.

Steps. In order to use METATEX the following
three steps are to be executed:

1. The METATEX file, suppose it is filename.ext,
is first processed by TEX, with the plain for-
mat, during which a METAFONT file named
auxiliar.mf is created. This METAFONT file
contains information provided by TEX concern-
ing the size of the labels, so the MF program can
delete this area from the figure if requested.
If the output file filename.dvi were typeset
now, it would have blanks in place of the fig-
ures, but otherwise be the same as the final
document.

2. Then MF, with the plain base, is run on aux-
iliar.mf. As a result, information specifying
where to typeset the labels is written in the log
file, auxiliar.log. In addition, the metric file,
auxiliar.tfm, and the generic format bitmap
font, auxiliar.329gf, are created. On my
system I have to process this gf file to get a
pk file that my drivers can read, so I execute
the program GFtoPK on it, getting the packed

preliminary draft, 10 Aug 2004 18:50

1002

bitmap font auxiliar.329pk. Please note
three points. i) The number 329, referring to
the resolution, varies according to the META-
FONT mode. ii) The tfm and pk files must
be in or moved to directories where programs
can find them. iii) METATEX sets the METRA-
FONT mode to localfont, thus assuming that
localfont is assigned the appropriate name.

3. Lastly, filename.ext is again run through
TEX. During this second run, both the font
auxiliar containing the figures and the infor-
mation explaining where to locate the labels
are available, so the document is complete.

The figures fill exactly the same area in both
the first and second TEX program runs, so indices,
tables of contents, and other references that also
need two passes to be resolved can take advantage
of the two runs needed by METATEX.

Use. To use the METATEX macros, they must be
imported by writing in the source file:

\input metatex

This has to be written after \mag has been given its
final value. When metatex.tex is read, METATEX
checks whether the file auxiliar.mf exists. If
it does not exist, then things are set up for the
first pass; for example, auxiliar.mf is opened for
writing. If it does exist, then things are set for the
second pass; for example, auxiliar.log is opened
for reading. This means that if auxiliar.mf is not
deleted, then step 3, the second TEX program pass,
is executed directly. This saves time when only the
text in file filename.ext, but not the figures, were
modified.

User macros. The METATEX user macros are:

e \MTbeginchar(wd,ht,dp) ; states that a figure
sized as given (width wd, height ht, depth dp)
will be created. These values should be known
both by TEX and by METAFONT, so for example
12pt, 6¢cm, \the\hsize or \the\dimen0, always
without #, are allowed. During the first pass,
TEX writes in auxiliar.mf the METAFONT
macro beginchar assigning character codes
sequentially, and box \MTbox is made empty
but sized as specified by the arguments of this
macro. During the second pass, TEX puts the
corresponding character of the font auxiliar
in box \MTbox. The size of \MTbox is that
specified and not affected by the character
dimensions.

e \MTendchar; finishes the figure definition.
During the first pass, TEX writes the METRA-
FONT macro endchar; in file auxiliar.mf.

preliminary draft, 10 Aug 2004 18:50

preliminary draft, 10 Aug 2004 18:50

TUGboat, Volume 0 (2001), No. 0

During the second pass, box \MTbox contains
the complete figure, including labels. Some-
thing like \box\MTbox is used to typeset the
figure.

e \MTlabel*(s)cc"Text"; adds a label to the
current figure. The parameter between quotes,
Text in the example, is the label content;
it will be put inside an \hbox and therefore
could be anything that TEX allows inside an
\hbox. The optional asterisk after \MTlabel
instructs METATEX to erase the area of the
figure already drawn that it is under the label.

The label will be located at METAFONT
point z.s, where s is the parameter between
parentheses. The reference point is further
specified by the optional parameter after the
right parenthesis, cc in the example. This
parameter is composed of exactly two letters:
the first can be t meaning top, ¢ meaning
center or b meaning bottom; and the second
letter can be 1 meaning left, ¢ meaning center
or r meaning right. So, for example, t1 means
that the label reference point is its top left
corner. The default value for the reference
point is cc, that is, its center.

\MT1label should only be used between
\MTbeginchar and \MTendchar. During the
first pass, it writes the following three elements
in auxiliar.mf: i) the METAFONT macros
which in turn cause MF to write the label
reference point location to its log file, aux-
iliar.log; ii) the four label sides, which are
by this means made available to the following
METAFONT code for the figure, notated as
y.s.t for the top side, y.s.b for the bottom
side, x.s.1 for the left side and x.s.r for
the right side; and iii) the code to delete, if
requested, the figure area already drawn that
is under the rectangle occupied by the label.
During the second pass, it adds the label to
the box \MTbox in the place that reads from
file auxiliar.log, making no modification to
the dimensions of \MTbox, even if the label is
typeset outside the box.

There are three more macros for passing infor-
mation to METAFONT, that is, for writing general
text in auxiliar.mf: \MT:, \MTcode and \MTline.
This happens only during the first pass; during the
second pass, these macros do nothing.

e \MT: writes in file auxiliar.mf everything till
the end of line. It writes verbatim except for
the character \, which keeps its normal TEX
\catcode of 0. Spaces are not ignored after

preliminary draft, 10 Aug 2004 18:50

TUGDboat, Volume 0 (2001), No. 0

macros. The sequence \\ writes a single \ in

file auxiliar.mf.

e \MTcode writes in file auxiliar.mf everything
until it finds a line equal (including \catcodes)
to the current value of \MTendmark. By default,
this is a blank line, thus, \def\MTendmark{}.
As with \MT:, it writes verbatim except for
\, which still operates as an escape character.
The control sequence \\ writes a single \ in file
auxiliar.mf.

e \MTline{text} writes its parameter to aux-
iliar.mf, text in the example. It does not
change the \catcodes in the argument, so it
does not perform verbatim writing. But all
plain special characters can be written prefix-
ing them by the escape character \. The plain
special characters are (not including the first
colon nor the final period): \{}$&#"_~%. For
example, \# results in #.

When defining TEX macros that write to aux-
iliar.mf, \MTline should generally be used in
preference to \MT: or \MTcode, because the latter
two use the end of line in a special way that is not
usually available when TEX is reading a macro.

TEX dimensions can be included using any
of these three writing macros. For example,
\the\hsize will be expanded to 225.0pt (for the
present article), and written as such to the META-
FONT file auxiliar.mf. Note that the character
\ keeps its escape \catcode in all three writing
macros. In the case of \MTline, braces {} also
keep their \catcodes and therefore macros with
parameters can be used normally.

Examples

Diagram. First a typical example of METATEX
usage, showing the file formats, programs, and their
relationships. The figure width is exactly \hsize,
but what is more important is that the same code
will adapt itself to any value for the measure. Well,
of course, not to any width but to any width
between, let’s say, 8 cm and 25 cm.

Figure 1 is the one column version, and Figure 2
(above the appendix) is the two column version,
generated by the same source.

Shadowing. Both TEX and METAFONT are ill
suited to creating shadows. In TEX, one straight-
forward technique is double use of \leaders, but
in practice this results in huge dvi files. In META-
FONT, drawing lots of tiny points easily exceeds
the capacity of the program. The solution is to
coordinate the work of both programs.

preliminary draft, 10 Aug 2004 18:50

preliminary draft, 10 Aug 2004 18:50

1003

Figure 1: One column diagram

To create a large rectangular shadow we divide
it into an array of n x m smaller rectangles. The
smaller rectangles are all identical, so it is enough
for METAFONT to draw one shadow character and
then for TEX to typeset a solid area repeating it.

To simplify the tasks of both TEX and META-
FONT, the size of the shadow character should
be similar to that of normal characters, because
neither program was designed to work well with
extraordinarily large (or small) characters. So a
good approach is to make the shadow character as
big as possible but never wider nor higher than
16 pt.

For METATEX, each figure is a character.
This causes problems with METAFONT when the
figure is big and the resolution is high, because it
cannot draw areas bigger than 4095 x 4095 pixels.
This is not usually a problem working at 300 dpi.
(It is never a problem with METAPOST, see the
following section on PostScript. Another advantage
of using PostScript is that you get a shadow simply
by drawing a grey rule, and none of the above
machinations are necessary.)

Keys. After the following METATEX macros:

1. \MTcode

2. def keybox =

3. pickup pencircle scaled 0.8pt;
4. x1 = x3 = 1pt;

5. x2 = x4 = w - 1pt;

6. xb =0; x6 = w;

7.yl = y2 = -d;

8. y3 =y4 = h;

9. y5 = y6 = (b - d)/2;

10. draw z1 -- z2 .. z6{up} ..

11. z4 -- z3 .. zb{down} .. cycle;
12. 20 = (x1,0);

13. enddef;

preliminary draft, 10 Aug 2004 18:50

1004

14.

15. \def\defkey#1#2{\setbox0=\hbox{\sf#2}%
16. \dimenO=\wdO\advance\dimenO by 2pt
17. \dimen2=\htO\advance\dimen2 by 1pt
18. \dimen4=\dpO\advance\dimen4 by 1pt
19. \MTbeginchar (\the\dimenO,%

20. \the\dimen2,%

21. \the\dimen4) ;%

22 \MT1line{keybox;1}/

23. \MT1label(0)bl"\sf #2";%

24. \MTendchar;Y%

25. \expandafter\newbox

26. \csname\string#ibox\endcsname

27. \expandafter\setbox

28. \csname\string#ibox\endcsname

29. =\vtop{\unvbox\MTbox}/,

30. \def#1{\expandafter\copy

31. \csname\string#ibox\endcsnamel}}

33. \def\makekey#1{\expandafter\defkey’
34. \csname#1\endcsname{#1}}

Then, we can declare \makekey{Alt} to typeset
simply via \Alt. It is also possible to declare
\defkey\escape{\tt\char92} and then \escape
results in (V).

Baroque tables. Baroque periods are the result
of new technical achievements providing unexplored
possibilities and hence the urgent need to exper-
iment with them, frequently far away from what
discretion might recommend. This explains the
time of baroque software that we live in, and in-
creases the value of METATEX, because it provides
the means to easily draw baroque tables. I am not
a baroque man, so my baroque table example is not
baroque but, and this is the point, it is at least not
built with straight lines.

his is not a straight table
but it’s only an example

and therefore not so ample
of what’s METATEX-able!

“Ornate paragraphs. Only if you are truly
baroque can you get the most from METATEX.
If, for example, you like ornate paragraphs, you
are in your element. Just put the material in
a \vbox to get the height and the depth, and
pass these dimensions to METAFONT to draw
a right sized embellishment. Ah!, but be aware
that Computer Modern is a neoclassical font,

o it won’t mix well with your elaborations.

preliminary draft, 10 Aug 2004 18:50

preliminary draft, 10 Aug 2004 18:50

TUGboat, Volume 0 (2001), No. 0

Exercise.* Take three equal bars and build as
shown. Ask Roger Penrose if you don’t find the
solution.

ALD
BpP
>PP
Vv

VY'Y

Y«
<44

* The real exercise is to fill the rest of the page
with tribars. A clue: let TEX to calculate how many
are needed, so you can concentrate your efforts in
drawing the figure.

preliminary draft, 10 Aug 2004 18:50

TUGDboat, Volume 0 (2001), No. 0

PostScript

By taking advantage of METAPOST, we can make
PostScript versions of the METATEX files. Sim-
ply execute mpost &plain auxiliar.mf instead of
METAFONT and, after TEX’s second pass, execute
dvips (METATEX uses dvips specials). This works
because auxiliar.mf is valid code for both METR-
FONT and METAPOST, and because, in the second
TEX pass, METATEX checks which one was used
and adapts itself to the situation.

And thanks to PDFTEX and the ConTEXt files
supp-mis.tex and supp-pdf . tex, it is also possible
to get PDF output. Just execute PDFTEX twice,
instead of TEX, and once METAPOST, instead of
METAFONT. (In practice, METATEX uses its own
macro file mtmp2pdf.tex for this, instead of the
ConTEXt files. I extracted all that METATEX needs
from the ConTEXt files into mtmp2pdf . tex.)

This works because, if METATEX determines
that METAPOST was employed to draw the figures,
it then checks which program, TEX or PDFTEX,
is executing. If TEX, then it includes the files
produced by METAPOST using the dvips specials.
If PDFTEX, it translates from ps to pdf.

Therefore, the same METATEX source file gen-
erates at will any of the three output formats—dvi,
ps, or pdf—just by running the appropriate pro-
grams. In the appendix, as an example, there is
a DOS batch file that shows how to get the pdf
version of a file filename.ext.

Other graphical tools

There are other tools to include pictures in a TEX
document. IATEX’s picture environment, PICTEX,
and mfpic, are three of them. METATEX is similar
to mfpic, in that both use METAFONT to draw.

The aim of mfpic is to overcome the difficulties
of IMTEX’s picture environment and of P[CTEX.
IATEX’s picture environment uses four pre-cooked
special fonts, and its drawings are just compositions
of these characters (as well as TEX’s builtin \hrules
and \vrules). P[CIEX only uses a tiny point to
compose the pictures, so it is more general. But
letting TEX to draw the figures setting point after
point is painful, as noted above. The mfpic solution
uses a better tool for drawing: METAFONT.

With these origins, for mfpic, METAFONT is a
hidden back-end processor, and mfpic imposes only
two requirements on its users: to know TEX, and
to know mfpic. On the other hand, METATEX’s
approach is minimalist, at the cost of being more
demanding with its users. A METATEX user has to
know TEX, METAFONT, and METATEX — although

preliminary draft, 10 Aug 2004 18:50

preliminary draft, 10 Aug 2004 18:50

1005

this last requirement is small, because METATEX
only builds the necessary bridges to use TEX and
METAFONT in a cooperative way.

A feature that shows the different strategies
employed in designing mfpic and METATEX is label
positioning. METATEX labels are located by METRA-
FONT, so TEX has to read the METAFONT log file
to learn where to typeset them. For mfpic, TEX
itself locates the labels, but by doing so mfpic has
to give up some nice METAFONT characteristics,
such as its equation solving capabilities.

In summary, mfpic’s aim is to draw pictures in
TEX documents in a better way than using I#TEX’s
picture environment or P[CTEX; while METATEXs
intention is to coordinate the work of TEX and
METAFONT. In this way, METATEX provides the
full raw power of TEX and METAFONT, and it is up
to you to harness them.

Final remarks

I have been using METATEX for some years. The
first version was dated 1994, but it has been used
only for personal purposes. For this reason, it is
not truly a straightforward end-user tool, as for
example IATEX packages should be. It has to be
used knowledgeably and with care. And though
most tasks can be automated, by chaining TEX
and METAFONT errors are even more difficult to
pinpoint than in TEX or METAFONT alone.

Nevertheless, METATEX serves to validate the
feasibility of a closer collaboration between TEX
and METAFONT and to appraise the interest of such
a collaboration. And, of course, if you dare, you
can get lots of fun, and at least an equal amount of
frustration, using METATEX. Try it!

The METATEX package is available from CTAN
in CTAN:/macros/plain/contrib/metatex.

Happy METATEXing!
o Ramon Casares

Telefénica de Espana
r.casares@computer.org

preliminary draft, 10 Aug 2004 18:50

1006 preliminary draft, 10 Aug 2004 18:50 TUGboat, Volume 0 (2001), No. 0

FMT TEX>—7 TFM BAS
log DVI MD‘i MF |f——

TEX formats

Figure 2: Two-column diagram

Appendix: Pseudo-batch example
This is an example based on DOS batch files that can be adapted for other operating systems. It processes
the file filename.ext, generating filename.pdf. We will comment each line of pseudo-code.
1. We go to the directory where our working files are.
cd c:\dir\subdir\mydir

2. We set environment variables (if necessary). In this case we are using a web2c system, so it is enough

to set one. In web2c, by default, all programs look for files in the current dir, “.”, and that is enough
for us.
set TEXMFCNF=c:\tex\texmf.local\web2c;c:\tex\texmf\web2c;d: \texmf\web2c
3. We tell the operating system where to find the programs.
path=$path$;c:\tex\bin\dos
4. After the settings, we force the first TEX pass.
if exist auxiliar.mf del auxiliar.mf
5. Then, we execute the first TEX pass (in this case, it is PDFTEX).
pdftex &plain filename.ext
6. If METATEX was not used, and no auxiliar.mf was written, then we are done.
if not exist auxiliar.mf goto end
7. Otherwise we run METAPOST with its &plain memory (format), also known as &mpost.
mpost &plain auxiliar.mf
8. Finally, we execute the second TEX pass.
pdftex &plain filename.ext
9. We now have the complete filename.pdf file.

:end

preliminary draft, 10 Aug 2004 18:50 preliminary draft, 10 Aug 2004 18:50

